Solve for I
\left\{\begin{matrix}I=\frac{En}{Rn+V}\text{, }&V\neq -Rn\text{ and }n\neq 0\\I\in \mathrm{R}\text{, }&E=0\text{ and }V=-Rn\text{ and }n\neq 0\end{matrix}\right.
Solve for E
E=\frac{I\left(Rn+V\right)}{n}
n\neq 0
Share
Copied to clipboard
En=I\left(R+\frac{V}{n}\right)n
Multiply both sides of the equation by n.
En=I\left(\frac{Rn}{n}+\frac{V}{n}\right)n
To add or subtract expressions, expand them to make their denominators the same. Multiply R times \frac{n}{n}.
En=I\times \frac{Rn+V}{n}n
Since \frac{Rn}{n} and \frac{V}{n} have the same denominator, add them by adding their numerators.
En=\frac{I\left(Rn+V\right)}{n}n
Express I\times \frac{Rn+V}{n} as a single fraction.
En=\frac{I\left(Rn+V\right)n}{n}
Express \frac{I\left(Rn+V\right)}{n}n as a single fraction.
En=I\left(Rn+V\right)
Cancel out n in both numerator and denominator.
En=IRn+IV
Use the distributive property to multiply I by Rn+V.
IRn+IV=En
Swap sides so that all variable terms are on the left hand side.
\left(Rn+V\right)I=En
Combine all terms containing I.
\frac{\left(Rn+V\right)I}{Rn+V}=\frac{En}{Rn+V}
Divide both sides by V+Rn.
I=\frac{En}{Rn+V}
Dividing by V+Rn undoes the multiplication by V+Rn.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}