Solve for M
M=\frac{82}{15E}
E\neq 0
Solve for E
E=\frac{82}{15M}
M\neq 0
Share
Copied to clipboard
EM=\frac{2}{3}+4.8
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by M.
EM=\frac{82}{15}
Add \frac{2}{3} and 4.8 to get \frac{82}{15}.
\frac{EM}{E}=\frac{\frac{82}{15}}{E}
Divide both sides by E.
M=\frac{\frac{82}{15}}{E}
Dividing by E undoes the multiplication by E.
M=\frac{82}{15E}
Divide \frac{82}{15} by E.
M=\frac{82}{15E}\text{, }M\neq 0
Variable M cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}