Solve for D
D=\frac{3x^{2}+17}{10x\left(2x-1\right)}
x\neq \frac{1}{2}\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{25D^{2}+340D-51}+5D}{20D-3}\text{; }x=\frac{-\sqrt{25D^{2}+340D-51}+5D}{20D-3}\text{, }&D\neq \frac{3}{20}\\x=-\frac{34}{3}\text{, }&D=\frac{3}{20}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{25D^{2}+340D-51}+5D}{20D-3}\text{; }x=\frac{-\sqrt{25D^{2}+340D-51}+5D}{20D-3}\text{, }&D\leq \frac{-\sqrt{1207}-34}{5}\text{ or }\left(D\neq \frac{3}{20}\text{ and }D\geq \frac{\sqrt{1207}-34}{5}\right)\\x=-\frac{34}{3}\text{, }&D=\frac{3}{20}\end{matrix}\right.
Graph
Share
Copied to clipboard
Dx\times 10\left(2x-1\right)=3x^{2}+17
Multiply both sides of the equation by 10\left(2x-1\right).
20Dx^{2}-Dx\times 10=3x^{2}+17
Use the distributive property to multiply Dx\times 10 by 2x-1.
20Dx^{2}-10Dx=3x^{2}+17
Multiply -1 and 10 to get -10.
\left(20x^{2}-10x\right)D=3x^{2}+17
Combine all terms containing D.
\frac{\left(20x^{2}-10x\right)D}{20x^{2}-10x}=\frac{3x^{2}+17}{20x^{2}-10x}
Divide both sides by 20x^{2}-10x.
D=\frac{3x^{2}+17}{20x^{2}-10x}
Dividing by 20x^{2}-10x undoes the multiplication by 20x^{2}-10x.
D=\frac{3x^{2}+17}{10x\left(2x-1\right)}
Divide 3x^{2}+17 by 20x^{2}-10x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}