Solve for D (complex solution)
D=\frac{33178\left(m-1\right)^{-\frac{1}{2}}}{P}
m\neq 1\text{ and }P\neq 0
Solve for P (complex solution)
P=\frac{33178\left(m-1\right)^{-\frac{1}{2}}}{D}
m\neq 1\text{ and }D\neq 0
Solve for D
D=\frac{33178}{\sqrt{m-1}P}
P\neq 0\text{ and }m>1
Solve for P
P=\frac{33178}{\sqrt{m-1}D}
D\neq 0\text{ and }m>1
Quiz
Linear Equation
5 problems similar to:
D P = \sqrt { \frac { ( 1828 - 35006 ) ^ { 2 } } { m - 1 } }
Share
Copied to clipboard
DP=\sqrt{\frac{\left(-33178\right)^{2}}{m-1}}
Subtract 35006 from 1828 to get -33178.
DP=\sqrt{\frac{1100779684}{m-1}}
Calculate -33178 to the power of 2 and get 1100779684.
PD=\sqrt{\frac{1100779684}{m-1}}
The equation is in standard form.
\frac{PD}{P}=\frac{33178\left(m-1\right)^{-\frac{1}{2}}}{P}
Divide both sides by P.
D=\frac{33178\left(m-1\right)^{-\frac{1}{2}}}{P}
Dividing by P undoes the multiplication by P.
DP=\sqrt{\frac{\left(-33178\right)^{2}}{m-1}}
Subtract 35006 from 1828 to get -33178.
DP=\sqrt{\frac{1100779684}{m-1}}
Calculate -33178 to the power of 2 and get 1100779684.
\frac{DP}{D}=\frac{33178\left(m-1\right)^{-\frac{1}{2}}}{D}
Divide both sides by D.
P=\frac{33178\left(m-1\right)^{-\frac{1}{2}}}{D}
Dividing by D undoes the multiplication by D.
DP=\sqrt{\frac{\left(-33178\right)^{2}}{m-1}}
Subtract 35006 from 1828 to get -33178.
DP=\sqrt{\frac{1100779684}{m-1}}
Calculate -33178 to the power of 2 and get 1100779684.
PD=\sqrt{\frac{1100779684}{m-1}}
The equation is in standard form.
\frac{PD}{P}=\frac{33178}{\sqrt{m-1}P}
Divide both sides by P.
D=\frac{33178}{\sqrt{m-1}P}
Dividing by P undoes the multiplication by P.
DP=\sqrt{\frac{\left(-33178\right)^{2}}{m-1}}
Subtract 35006 from 1828 to get -33178.
DP=\sqrt{\frac{1100779684}{m-1}}
Calculate -33178 to the power of 2 and get 1100779684.
\frac{DP}{D}=\frac{33178}{\sqrt{m-1}D}
Divide both sides by D.
P=\frac{33178}{\sqrt{m-1}D}
Dividing by D undoes the multiplication by D.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}