Solve for D
D=-\frac{T}{2}+12
Solve for T
T=24-2D
Share
Copied to clipboard
D\times 2+T=22+2
Add 2 to both sides.
D\times 2+T=24
Add 22 and 2 to get 24.
D\times 2=24-T
Subtract T from both sides.
2D=24-T
The equation is in standard form.
\frac{2D}{2}=\frac{24-T}{2}
Divide both sides by 2.
D=\frac{24-T}{2}
Dividing by 2 undoes the multiplication by 2.
D=-\frac{T}{2}+12
Divide 24-T by 2.
-2+T=22-D\times 2
Subtract D\times 2 from both sides.
T=22-D\times 2+2
Add 2 to both sides.
T=22-2D+2
Multiply -1 and 2 to get -2.
T=24-2D
Add 22 and 2 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}