Solve for A (complex solution)
\left\{\begin{matrix}\\A=D+1\text{, }&\text{unconditionally}\\A\in \mathrm{C}\text{, }&D=1\end{matrix}\right.
Solve for A
\left\{\begin{matrix}\\A=D+1\text{, }&\text{unconditionally}\\A\in \mathrm{R}\text{, }&D=1\end{matrix}\right.
Solve for D
D=A-1
D=1
Share
Copied to clipboard
-DA+A-1=-D^{2}
Subtract D^{2} from both sides. Anything subtracted from zero gives its negation.
-DA+A=-D^{2}+1
Add 1 to both sides.
\left(-D+1\right)A=-D^{2}+1
Combine all terms containing A.
\left(1-D\right)A=1-D^{2}
The equation is in standard form.
\frac{\left(1-D\right)A}{1-D}=\frac{1-D^{2}}{1-D}
Divide both sides by -D+1.
A=\frac{1-D^{2}}{1-D}
Dividing by -D+1 undoes the multiplication by -D+1.
A=D+1
Divide -D^{2}+1 by -D+1.
-DA+A-1=-D^{2}
Subtract D^{2} from both sides. Anything subtracted from zero gives its negation.
-DA+A=-D^{2}+1
Add 1 to both sides.
\left(-D+1\right)A=-D^{2}+1
Combine all terms containing A.
\left(1-D\right)A=1-D^{2}
The equation is in standard form.
\frac{\left(1-D\right)A}{1-D}=\frac{1-D^{2}}{1-D}
Divide both sides by -D+1.
A=\frac{1-D^{2}}{1-D}
Dividing by -D+1 undoes the multiplication by -D+1.
A=D+1
Divide -D^{2}+1 by -D+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}