Skip to main content
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

D^{2}+64=|7^{2}|
Calculate 8 to the power of 2 and get 64.
D^{2}+64=|49|
Calculate 7 to the power of 2 and get 49.
D^{2}+64=49
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 49 is 49.
D^{2}=49-64
Subtract 64 from both sides.
D^{2}=-15
Subtract 64 from 49 to get -15.
D=\sqrt{15}i D=-\sqrt{15}i
The equation is now solved.
D^{2}+64=|7^{2}|
Calculate 8 to the power of 2 and get 64.
D^{2}+64=|49|
Calculate 7 to the power of 2 and get 49.
D^{2}+64=49
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 49 is 49.
D^{2}+64-49=0
Subtract 49 from both sides.
D^{2}+15=0
Subtract 49 from 64 to get 15.
D=\frac{0±\sqrt{0^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{0±\sqrt{-4\times 15}}{2}
Square 0.
D=\frac{0±\sqrt{-60}}{2}
Multiply -4 times 15.
D=\frac{0±2\sqrt{15}i}{2}
Take the square root of -60.
D=\sqrt{15}i
Now solve the equation D=\frac{0±2\sqrt{15}i}{2} when ± is plus.
D=-\sqrt{15}i
Now solve the equation D=\frac{0±2\sqrt{15}i}{2} when ± is minus.
D=\sqrt{15}i D=-\sqrt{15}i
The equation is now solved.