D ^ { 2 } + 8 ^ { 2 } = | 7 ^ { 2 }
Solve for D
D=-\sqrt{15}i\approx -0-3.872983346i
D=\sqrt{15}i\approx 3.872983346i
Share
Copied to clipboard
D^{2}+64=|7^{2}|
Calculate 8 to the power of 2 and get 64.
D^{2}+64=|49|
Calculate 7 to the power of 2 and get 49.
D^{2}+64=49
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 49 is 49.
D^{2}=49-64
Subtract 64 from both sides.
D^{2}=-15
Subtract 64 from 49 to get -15.
D=\sqrt{15}i D=-\sqrt{15}i
The equation is now solved.
D^{2}+64=|7^{2}|
Calculate 8 to the power of 2 and get 64.
D^{2}+64=|49|
Calculate 7 to the power of 2 and get 49.
D^{2}+64=49
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 49 is 49.
D^{2}+64-49=0
Subtract 49 from both sides.
D^{2}+15=0
Subtract 49 from 64 to get 15.
D=\frac{0±\sqrt{0^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{0±\sqrt{-4\times 15}}{2}
Square 0.
D=\frac{0±\sqrt{-60}}{2}
Multiply -4 times 15.
D=\frac{0±2\sqrt{15}i}{2}
Take the square root of -60.
D=\sqrt{15}i
Now solve the equation D=\frac{0±2\sqrt{15}i}{2} when ± is plus.
D=-\sqrt{15}i
Now solve the equation D=\frac{0±2\sqrt{15}i}{2} when ± is minus.
D=\sqrt{15}i D=-\sqrt{15}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}