Skip to main content
Solve for l
Tick mark Image
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

lIm(\frac{\sqrt{n^{2}+1}-\sqrt[3]{3n^{3}+2}}{\sqrt[4]{2n^{4}+n+2}-n})=D
Swap sides so that all variable terms are on the left hand side.
\left(Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)\right)l=D
The equation is in standard form.
\frac{\left(Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)\right)l}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)}=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)}
Divide both sides by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}).
l=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)}
Dividing by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}) undoes the multiplication by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}).
l=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Im(\sqrt{n^{2}+1})+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Re(\sqrt{n^{2}+1})-Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Im(\sqrt[3]{3n^{3}+2})-Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Re(\sqrt[3]{3n^{3}+2})}
Divide D by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}).