D = \lim \frac { \sqrt { n ^ { 2 } + 1 } - \sqrt[ 3 ] { 3 n ^ { 3 } + 2 } } { \sqrt[ 4 ] { 2 n ^ { 4 } + n + 2 } - n }
Solve for l
\left\{\begin{matrix}l=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Im(\sqrt{n^{2}+1})+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Re(\sqrt{n^{2}+1})-Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Im(\sqrt[3]{3n^{3}+2})-Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Re(\sqrt[3]{3n^{3}+2})}\text{, }&Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)\neq 0\text{ and }\sqrt[4]{2n^{4}+n+2}-n\neq 0\\l\in \mathrm{C}\text{, }&D=0\text{ and }Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)=0\text{ and }\sqrt[4]{2n^{4}+n+2}-n\neq 0\end{matrix}\right.
Solve for D
D=\left(Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)\right)l
\sqrt[4]{2n^{4}+n+2}-n\neq 0
Share
Copied to clipboard
lIm(\frac{\sqrt{n^{2}+1}-\sqrt[3]{3n^{3}+2}}{\sqrt[4]{2n^{4}+n+2}-n})=D
Swap sides so that all variable terms are on the left hand side.
\left(Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)\right)l=D
The equation is in standard form.
\frac{\left(Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)\right)l}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)}=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)}
Divide both sides by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}).
l=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})\left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)}
Dividing by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}) undoes the multiplication by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}).
l=\frac{D}{Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Im(\sqrt{n^{2}+1})+Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Re(\sqrt{n^{2}+1})-Re(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Im(\sqrt[3]{3n^{3}+2})-Im(\frac{1}{\sqrt[4]{2n^{4}+n+2}-n})Re(\sqrt[3]{3n^{3}+2})}
Divide D by \left(Re(\sqrt{n^{2}+1})-Re(\sqrt[3]{3n^{3}+2})\right)Im(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1})+\left(Im(\sqrt{n^{2}+1})-Im(\sqrt[3]{3n^{3}+2})\right)Re(\left(\sqrt[4]{2n^{4}+n+2}-n\right)^{-1}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}