Solve for v_0
v_{0}=\left(\sqrt{2}+\sqrt{3}\right)D
Solve for D
D=\left(\sqrt{3}-\sqrt{2}\right)v_{0}
Share
Copied to clipboard
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{v_{0}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
D=-v_{0}\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
D=-\left(v_{0}\sqrt{2}-v_{0}\sqrt{3}\right)
Use the distributive property to multiply v_{0} by \sqrt{2}-\sqrt{3}.
D=-v_{0}\sqrt{2}+v_{0}\sqrt{3}
To find the opposite of v_{0}\sqrt{2}-v_{0}\sqrt{3}, find the opposite of each term.
-v_{0}\sqrt{2}+v_{0}\sqrt{3}=D
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{2}+\sqrt{3}\right)v_{0}=D
Combine all terms containing v_{0}.
\left(\sqrt{3}-\sqrt{2}\right)v_{0}=D
The equation is in standard form.
\frac{\left(\sqrt{3}-\sqrt{2}\right)v_{0}}{\sqrt{3}-\sqrt{2}}=\frac{D}{\sqrt{3}-\sqrt{2}}
Divide both sides by -\sqrt{2}+\sqrt{3}.
v_{0}=\frac{D}{\sqrt{3}-\sqrt{2}}
Dividing by -\sqrt{2}+\sqrt{3} undoes the multiplication by -\sqrt{2}+\sqrt{3}.
v_{0}=\left(\sqrt{2}+\sqrt{3}\right)D
Divide D by -\sqrt{2}+\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}