Skip to main content
Solve for v_0
Tick mark Image
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{v_{0}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
D=\frac{v_{0}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
D=-v_{0}\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
D=-\left(v_{0}\sqrt{2}-v_{0}\sqrt{3}\right)
Use the distributive property to multiply v_{0} by \sqrt{2}-\sqrt{3}.
D=-v_{0}\sqrt{2}+v_{0}\sqrt{3}
To find the opposite of v_{0}\sqrt{2}-v_{0}\sqrt{3}, find the opposite of each term.
-v_{0}\sqrt{2}+v_{0}\sqrt{3}=D
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{2}+\sqrt{3}\right)v_{0}=D
Combine all terms containing v_{0}.
\left(\sqrt{3}-\sqrt{2}\right)v_{0}=D
The equation is in standard form.
\frac{\left(\sqrt{3}-\sqrt{2}\right)v_{0}}{\sqrt{3}-\sqrt{2}}=\frac{D}{\sqrt{3}-\sqrt{2}}
Divide both sides by -\sqrt{2}+\sqrt{3}.
v_{0}=\frac{D}{\sqrt{3}-\sqrt{2}}
Dividing by -\sqrt{2}+\sqrt{3} undoes the multiplication by -\sqrt{2}+\sqrt{3}.
v_{0}=\left(\sqrt{2}+\sqrt{3}\right)D
Divide D by -\sqrt{2}+\sqrt{3}.