Solve for D
D=\frac{3}{7}\approx 0.428571429
Assign D
D≔\frac{3}{7}
Share
Copied to clipboard
D=\frac{\frac{5}{7}}{\frac{40}{42}+\frac{5}{7}}
Reduce the fraction \frac{10}{14} to lowest terms by extracting and canceling out 2.
D=\frac{\frac{5}{7}}{\frac{20}{21}+\frac{5}{7}}
Reduce the fraction \frac{40}{42} to lowest terms by extracting and canceling out 2.
D=\frac{\frac{5}{7}}{\frac{20}{21}+\frac{15}{21}}
Least common multiple of 21 and 7 is 21. Convert \frac{20}{21} and \frac{5}{7} to fractions with denominator 21.
D=\frac{\frac{5}{7}}{\frac{20+15}{21}}
Since \frac{20}{21} and \frac{15}{21} have the same denominator, add them by adding their numerators.
D=\frac{\frac{5}{7}}{\frac{35}{21}}
Add 20 and 15 to get 35.
D=\frac{\frac{5}{7}}{\frac{5}{3}}
Reduce the fraction \frac{35}{21} to lowest terms by extracting and canceling out 7.
D=\frac{5}{7}\times \frac{3}{5}
Divide \frac{5}{7} by \frac{5}{3} by multiplying \frac{5}{7} by the reciprocal of \frac{5}{3}.
D=\frac{5\times 3}{7\times 5}
Multiply \frac{5}{7} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
D=\frac{3}{7}
Cancel out 5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}