Solve for D
D = \frac{833}{495} = 1\frac{338}{495} \approx 1.682828283
Assign D
D≔\frac{833}{495}
Share
Copied to clipboard
D=\frac{\left(\frac{7}{4}-\frac{1}{3}\right)\left(\frac{8}{3}-\frac{3}{2}\right)}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Divide \frac{\frac{7}{4}-\frac{1}{3}}{\frac{2}{7}+\frac{1}{4}} by \frac{\frac{1}{3}+\frac{3}{2}}{\frac{8}{3}-\frac{3}{2}} by multiplying \frac{\frac{7}{4}-\frac{1}{3}}{\frac{2}{7}+\frac{1}{4}} by the reciprocal of \frac{\frac{1}{3}+\frac{3}{2}}{\frac{8}{3}-\frac{3}{2}}.
D=\frac{\left(\frac{21}{12}-\frac{4}{12}\right)\left(\frac{8}{3}-\frac{3}{2}\right)}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Least common multiple of 4 and 3 is 12. Convert \frac{7}{4} and \frac{1}{3} to fractions with denominator 12.
D=\frac{\frac{21-4}{12}\left(\frac{8}{3}-\frac{3}{2}\right)}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Since \frac{21}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
D=\frac{\frac{17}{12}\left(\frac{8}{3}-\frac{3}{2}\right)}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Subtract 4 from 21 to get 17.
D=\frac{\frac{17}{12}\left(\frac{16}{6}-\frac{9}{6}\right)}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Least common multiple of 3 and 2 is 6. Convert \frac{8}{3} and \frac{3}{2} to fractions with denominator 6.
D=\frac{\frac{17}{12}\times \frac{16-9}{6}}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Since \frac{16}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
D=\frac{\frac{17}{12}\times \frac{7}{6}}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Subtract 9 from 16 to get 7.
D=\frac{\frac{17\times 7}{12\times 6}}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Multiply \frac{17}{12} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
D=\frac{\frac{119}{72}}{\left(\frac{2}{7}+\frac{1}{4}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Do the multiplications in the fraction \frac{17\times 7}{12\times 6}.
D=\frac{\frac{119}{72}}{\left(\frac{8}{28}+\frac{7}{28}\right)\left(\frac{1}{3}+\frac{3}{2}\right)}
Least common multiple of 7 and 4 is 28. Convert \frac{2}{7} and \frac{1}{4} to fractions with denominator 28.
D=\frac{\frac{119}{72}}{\frac{8+7}{28}\left(\frac{1}{3}+\frac{3}{2}\right)}
Since \frac{8}{28} and \frac{7}{28} have the same denominator, add them by adding their numerators.
D=\frac{\frac{119}{72}}{\frac{15}{28}\left(\frac{1}{3}+\frac{3}{2}\right)}
Add 8 and 7 to get 15.
D=\frac{\frac{119}{72}}{\frac{15}{28}\left(\frac{2}{6}+\frac{9}{6}\right)}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{3}{2} to fractions with denominator 6.
D=\frac{\frac{119}{72}}{\frac{15}{28}\times \frac{2+9}{6}}
Since \frac{2}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
D=\frac{\frac{119}{72}}{\frac{15}{28}\times \frac{11}{6}}
Add 2 and 9 to get 11.
D=\frac{\frac{119}{72}}{\frac{15\times 11}{28\times 6}}
Multiply \frac{15}{28} times \frac{11}{6} by multiplying numerator times numerator and denominator times denominator.
D=\frac{\frac{119}{72}}{\frac{165}{168}}
Do the multiplications in the fraction \frac{15\times 11}{28\times 6}.
D=\frac{\frac{119}{72}}{\frac{55}{56}}
Reduce the fraction \frac{165}{168} to lowest terms by extracting and canceling out 3.
D=\frac{119}{72}\times \frac{56}{55}
Divide \frac{119}{72} by \frac{55}{56} by multiplying \frac{119}{72} by the reciprocal of \frac{55}{56}.
D=\frac{119\times 56}{72\times 55}
Multiply \frac{119}{72} times \frac{56}{55} by multiplying numerator times numerator and denominator times denominator.
D=\frac{6664}{3960}
Do the multiplications in the fraction \frac{119\times 56}{72\times 55}.
D=\frac{833}{495}
Reduce the fraction \frac{6664}{3960} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}