Solve for C
C=\frac{356911}{l}
l\neq 0
Solve for l
l=\frac{356911}{C}
C\neq 0
Share
Copied to clipboard
Cl=1000\left(7+\frac{1}{10}\right)^{3}-1000
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
Cl=1000\times \left(\frac{71}{10}\right)^{3}-1000
Add 7 and \frac{1}{10} to get \frac{71}{10}.
Cl=1000\times \frac{357911}{1000}-1000
Calculate \frac{71}{10} to the power of 3 and get \frac{357911}{1000}.
Cl=357911-1000
Multiply 1000 and \frac{357911}{1000} to get 357911.
Cl=356911
Subtract 1000 from 357911 to get 356911.
lC=356911
The equation is in standard form.
\frac{lC}{l}=\frac{356911}{l}
Divide both sides by l.
C=\frac{356911}{l}
Dividing by l undoes the multiplication by l.
Cl=1000\left(7+\frac{1}{10}\right)^{3}-1000
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
Cl=1000\times \left(\frac{71}{10}\right)^{3}-1000
Add 7 and \frac{1}{10} to get \frac{71}{10}.
Cl=1000\times \frac{357911}{1000}-1000
Calculate \frac{71}{10} to the power of 3 and get \frac{357911}{1000}.
Cl=357911-1000
Multiply 1000 and \frac{357911}{1000} to get 357911.
Cl=356911
Subtract 1000 from 357911 to get 356911.
\frac{Cl}{C}=\frac{356911}{C}
Divide both sides by C.
l=\frac{356911}{C}
Dividing by C undoes the multiplication by C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}