Solve for C (complex solution)
\left\{\begin{matrix}C=\frac{x+375}{50V}\text{, }&V\neq 0\\C\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=-375\text{ and }V=0\right)\end{matrix}\right.
Solve for V (complex solution)
\left\{\begin{matrix}V=\frac{x+375}{50C}\text{, }&C\neq 0\\V\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=-375\text{ and }C=0\right)\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=\frac{x+375}{50V}\text{, }&V\neq 0\\C\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=-375\text{ and }V=0\right)\end{matrix}\right.
Solve for V
\left\{\begin{matrix}V=\frac{x+375}{50C}\text{, }&C\neq 0\\V\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=-375\text{ and }C=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
VxC=\frac{x^{2}}{50}+\frac{15x}{2}
The equation is in standard form.
\frac{VxC}{Vx}=\frac{x\left(\frac{x}{50}+7.5\right)}{Vx}
Divide both sides by Vx.
C=\frac{x\left(\frac{x}{50}+7.5\right)}{Vx}
Dividing by Vx undoes the multiplication by Vx.
C=\frac{x+375}{50V}
Divide x\left(7.5+\frac{x}{50}\right) by Vx.
CxV=\frac{x^{2}}{50}+\frac{15x}{2}
The equation is in standard form.
\frac{CxV}{Cx}=\frac{x\left(\frac{x}{50}+7.5\right)}{Cx}
Divide both sides by Cx.
V=\frac{x\left(\frac{x}{50}+7.5\right)}{Cx}
Dividing by Cx undoes the multiplication by Cx.
V=\frac{x+375}{50C}
Divide x\left(7.5+\frac{x}{50}\right) by Cx.
VxC=\frac{x^{2}}{50}+\frac{15x}{2}
The equation is in standard form.
\frac{VxC}{Vx}=\frac{x\left(\frac{x}{50}+7.5\right)}{Vx}
Divide both sides by Vx.
C=\frac{x\left(\frac{x}{50}+7.5\right)}{Vx}
Dividing by Vx undoes the multiplication by Vx.
C=\frac{x+375}{50V}
Divide x\left(7.5+\frac{x}{50}\right) by Vx.
CxV=\frac{x^{2}}{50}+\frac{15x}{2}
The equation is in standard form.
\frac{CxV}{Cx}=\frac{x\left(\frac{x}{50}+7.5\right)}{Cx}
Divide both sides by Cx.
V=\frac{x\left(\frac{x}{50}+7.5\right)}{Cx}
Dividing by Cx undoes the multiplication by Cx.
V=\frac{x+375}{50C}
Divide x\left(7.5+\frac{x}{50}\right) by Cx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}