Solve for C
C=\frac{5}{4P}
P\neq 0
Solve for P
P=\frac{5}{4C}
C\neq 0
Share
Copied to clipboard
CP=\frac{5}{4}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
PC=\frac{5}{4}
The equation is in standard form.
\frac{PC}{P}=\frac{\frac{5}{4}}{P}
Divide both sides by P.
C=\frac{\frac{5}{4}}{P}
Dividing by P undoes the multiplication by P.
C=\frac{5}{4P}
Divide \frac{5}{4} by P.
CP=\frac{5}{4}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{CP}{C}=\frac{\frac{5}{4}}{C}
Divide both sides by C.
P=\frac{\frac{5}{4}}{C}
Dividing by C undoes the multiplication by C.
P=\frac{5}{4C}
Divide \frac{5}{4} by C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}