Solve for C
C=\frac{2\sqrt{518039}i}{O}
O\neq 0
Solve for O
O=\frac{2\sqrt{518039}i}{C}
C\neq 0
Share
Copied to clipboard
CO=\sqrt{1444-1440^{2}}
Calculate 38 to the power of 2 and get 1444.
CO=\sqrt{1444-2073600}
Calculate 1440 to the power of 2 and get 2073600.
CO=\sqrt{-2072156}
Subtract 2073600 from 1444 to get -2072156.
CO=2i\sqrt{518039}
Factor -2072156=\left(2i\right)^{2}\times 518039. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 518039} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{518039}. Take the square root of \left(2i\right)^{2}.
CO=2\sqrt{518039}i
Reorder the terms.
OC=2\sqrt{518039}i
The equation is in standard form.
\frac{OC}{O}=\frac{2\sqrt{518039}i}{O}
Divide both sides by O.
C=\frac{2\sqrt{518039}i}{O}
Dividing by O undoes the multiplication by O.
CO=\sqrt{1444-1440^{2}}
Calculate 38 to the power of 2 and get 1444.
CO=\sqrt{1444-2073600}
Calculate 1440 to the power of 2 and get 2073600.
CO=\sqrt{-2072156}
Subtract 2073600 from 1444 to get -2072156.
CO=2i\sqrt{518039}
Factor -2072156=\left(2i\right)^{2}\times 518039. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 518039} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{518039}. Take the square root of \left(2i\right)^{2}.
CO=2\sqrt{518039}i
Reorder the terms.
\frac{CO}{C}=\frac{2\sqrt{518039}i}{C}
Divide both sides by C.
O=\frac{2\sqrt{518039}i}{C}
Dividing by C undoes the multiplication by C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}