Solve for C
C=\frac{3}{D}
D\neq 0
Solve for D
D=\frac{3}{C}
C\neq 0
Share
Copied to clipboard
CD=\frac{5.4}{1.8}
Multiply 1.5 and 3.6 to get 5.4.
CD=\frac{54}{18}
Expand \frac{5.4}{1.8} by multiplying both numerator and the denominator by 10.
CD=3
Divide 54 by 18 to get 3.
DC=3
The equation is in standard form.
\frac{DC}{D}=\frac{3}{D}
Divide both sides by D.
C=\frac{3}{D}
Dividing by D undoes the multiplication by D.
CD=\frac{5.4}{1.8}
Multiply 1.5 and 3.6 to get 5.4.
CD=\frac{54}{18}
Expand \frac{5.4}{1.8} by multiplying both numerator and the denominator by 10.
CD=3
Divide 54 by 18 to get 3.
\frac{CD}{C}=\frac{3}{C}
Divide both sides by C.
D=\frac{3}{C}
Dividing by C undoes the multiplication by C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}