Solve for I
\left\{\begin{matrix}I=\frac{C}{\lambda }\text{, }&\lambda \neq 0\\I\in \mathrm{R}\text{, }&C=0\text{ and }\lambda =0\end{matrix}\right.
Solve for C
C=I\lambda
Share
Copied to clipboard
-\lambda I=-C
Subtract C from both sides. Anything subtracted from zero gives its negation.
\lambda I=C
Cancel out -1 on both sides.
\frac{\lambda I}{\lambda }=\frac{C}{\lambda }
Divide both sides by \lambda .
I=\frac{C}{\lambda }
Dividing by \lambda undoes the multiplication by \lambda .
C=\lambda I
Add \lambda I to both sides. Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}