Solve for C
C\in \mathrm{R}
V=0\text{ and }R_{2}\neq 0
Solve for R_2
R_{2}\neq 0
V=0
Share
Copied to clipboard
C\frac{\mathrm{d}}{\mathrm{d}t}(V)R_{2}+V=0
Multiply both sides of the equation by R_{2}.
C\frac{\mathrm{d}}{\mathrm{d}t}(V)R_{2}=-V
Subtract V from both sides. Anything subtracted from zero gives its negation.
0=-V
The equation is in standard form.
C\in
This is false for any C.
C\frac{\mathrm{d}}{\mathrm{d}t}(V)R_{2}+V=0
Variable R_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R_{2}.
C\frac{\mathrm{d}}{\mathrm{d}t}(V)R_{2}=-V
Subtract V from both sides. Anything subtracted from zero gives its negation.
0=-V
The equation is in standard form.
R_{2}\in
This is false for any R_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}