Solve for b
\left\{\begin{matrix}b=\frac{Cm}{m+1}\text{, }&m\neq -1\text{ and }m\neq 0\\b\in \mathrm{R}\text{, }&m=-1\text{ and }C=0\end{matrix}\right.
Solve for C
C=b+\frac{b}{m}
m\neq 0
Share
Copied to clipboard
Cm=b\left(1+\frac{1}{m}\right)m
Multiply both sides of the equation by m.
Cm=b\left(\frac{m}{m}+\frac{1}{m}\right)m
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m}{m}.
Cm=b\times \frac{m+1}{m}m
Since \frac{m}{m} and \frac{1}{m} have the same denominator, add them by adding their numerators.
Cm=\frac{b\left(m+1\right)}{m}m
Express b\times \frac{m+1}{m} as a single fraction.
Cm=\frac{b\left(m+1\right)m}{m}
Express \frac{b\left(m+1\right)}{m}m as a single fraction.
Cm=b\left(m+1\right)
Cancel out m in both numerator and denominator.
Cm=bm+b
Use the distributive property to multiply b by m+1.
bm+b=Cm
Swap sides so that all variable terms are on the left hand side.
\left(m+1\right)b=Cm
Combine all terms containing b.
\frac{\left(m+1\right)b}{m+1}=\frac{Cm}{m+1}
Divide both sides by m+1.
b=\frac{Cm}{m+1}
Dividing by m+1 undoes the multiplication by m+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}