C = A \frac { d x } { d t } + B x + D \frac { d x ^ { 2 } } { d t ^ { 2 } }
Solve for A
A\in \mathrm{R}
C=Bx
Solve for B
\left\{\begin{matrix}B=\frac{C}{x}\text{, }&x\neq 0\\B\in \mathrm{R}\text{, }&C=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
A\frac{\mathrm{d}(x)}{\mathrm{d}t}+Bx+D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}=C
Swap sides so that all variable terms are on the left hand side.
A\frac{\mathrm{d}(x)}{\mathrm{d}t}+D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}=C-Bx
Subtract Bx from both sides.
A\frac{\mathrm{d}(x)}{\mathrm{d}t}=C-Bx-D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}
Subtract D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}} from both sides.
A\frac{\mathrm{d}(x)}{\mathrm{d}t}=-D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}-Bx+C
Reorder the terms.
0=C-Bx
The equation is in standard form.
A\in
This is false for any A.
A\frac{\mathrm{d}(x)}{\mathrm{d}t}+Bx+D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}=C
Swap sides so that all variable terms are on the left hand side.
Bx+D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}=C-A\frac{\mathrm{d}(x)}{\mathrm{d}t}
Subtract A\frac{\mathrm{d}(x)}{\mathrm{d}t} from both sides.
Bx=C-A\frac{\mathrm{d}(x)}{\mathrm{d}t}-D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}
Subtract D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}} from both sides.
Bx=-D\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}-A\frac{\mathrm{d}(x)}{\mathrm{d}t}+C
Reorder the terms.
xB=C
The equation is in standard form.
\frac{xB}{x}=\frac{C}{x}
Divide both sides by x.
B=\frac{C}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}