Solve for C
C=\frac{25000}{1-3iqu}
u=0\text{ or }q\neq \frac{-i}{3u}
Solve for q
\left\{\begin{matrix}q=\frac{i\left(25000-C\right)}{3Cu}\text{, }&u\neq 0\text{ and }C\neq 0\\q\in \mathrm{C}\text{, }&C=25000\text{ and }u=0\end{matrix}\right.
Share
Copied to clipboard
C=25000+3iqCu
Multiply 3 and i to get 3i.
C-3iqCu=25000
Subtract 3iqCu from both sides.
\left(1-3iqu\right)C=25000
Combine all terms containing C.
\frac{\left(1-3iqu\right)C}{1-3iqu}=\frac{25000}{1-3iqu}
Divide both sides by 1-3iqu.
C=\frac{25000}{1-3iqu}
Dividing by 1-3iqu undoes the multiplication by 1-3iqu.
C=25000+3iqCu
Multiply 3 and i to get 3i.
25000+3iqCu=C
Swap sides so that all variable terms are on the left hand side.
3iqCu=C-25000
Subtract 25000 from both sides.
3iCuq=C-25000
The equation is in standard form.
\frac{3iCuq}{3iCu}=\frac{C-25000}{3iCu}
Divide both sides by 3iCu.
q=\frac{C-25000}{3iCu}
Dividing by 3iCu undoes the multiplication by 3iCu.
q=-\frac{i\left(C-25000\right)}{3Cu}
Divide C-25000 by 3iCu.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}