Solve for R
\left\{\begin{matrix}R=\frac{C^{2}}{8h}+\frac{h}{2}\text{, }&C\geq 0\text{ and }h\neq 0\\R\in \mathrm{R}\text{, }&h=0\text{ and }C=0\end{matrix}\right.
Solve for C (complex solution)
C=2\sqrt{h\left(2R-h\right)}
Solve for R (complex solution)
\left\{\begin{matrix}R=\frac{C^{2}}{8h}+\frac{h}{2}\text{, }&h\neq 0\text{ and }\left(C=0\text{ or }arg(C)<\pi \right)\\R\in \mathrm{C}\text{, }&C=0\text{ and }h=0\end{matrix}\right.
Solve for C
C=2\sqrt{h\left(2R-h\right)}
\left(h\leq 0\text{ or }h\leq 2R\right)\text{ and }\left(h\geq 0\text{ or }h\geq 2R\right)
Share
Copied to clipboard
C=\sqrt{8hR-4h^{2}}
Use the distributive property to multiply 4h by 2R-h.
\sqrt{8hR-4h^{2}}=C
Swap sides so that all variable terms are on the left hand side.
8hR-4h^{2}=C^{2}
Square both sides of the equation.
8hR-4h^{2}-\left(-4h^{2}\right)=C^{2}-\left(-4h^{2}\right)
Subtract -4h^{2} from both sides of the equation.
8hR=C^{2}-\left(-4h^{2}\right)
Subtracting -4h^{2} from itself leaves 0.
8hR=C^{2}+4h^{2}
Subtract -4h^{2} from C^{2}.
\frac{8hR}{8h}=\frac{C^{2}+4h^{2}}{8h}
Divide both sides by 8h.
R=\frac{C^{2}+4h^{2}}{8h}
Dividing by 8h undoes the multiplication by 8h.
R=\frac{C^{2}}{8h}+\frac{h}{2}
Divide C^{2}+4h^{2} by 8h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}