Solve for C
C = \frac{192}{125} = 1\frac{67}{125} = 1.536
Assign C
C≔\frac{192}{125}
Share
Copied to clipboard
C=\frac{23\times 73}{75\times 20}-\frac{3}{4}+\frac{\frac{7}{4}\times \frac{1}{2}}{\frac{3}{4}}
Multiply \frac{23}{75} times \frac{73}{20} by multiplying numerator times numerator and denominator times denominator.
C=\frac{1679}{1500}-\frac{3}{4}+\frac{\frac{7}{4}\times \frac{1}{2}}{\frac{3}{4}}
Do the multiplications in the fraction \frac{23\times 73}{75\times 20}.
C=\frac{1679}{1500}-\frac{1125}{1500}+\frac{\frac{7}{4}\times \frac{1}{2}}{\frac{3}{4}}
Least common multiple of 1500 and 4 is 1500. Convert \frac{1679}{1500} and \frac{3}{4} to fractions with denominator 1500.
C=\frac{1679-1125}{1500}+\frac{\frac{7}{4}\times \frac{1}{2}}{\frac{3}{4}}
Since \frac{1679}{1500} and \frac{1125}{1500} have the same denominator, subtract them by subtracting their numerators.
C=\frac{554}{1500}+\frac{\frac{7}{4}\times \frac{1}{2}}{\frac{3}{4}}
Subtract 1125 from 1679 to get 554.
C=\frac{277}{750}+\frac{\frac{7}{4}\times \frac{1}{2}}{\frac{3}{4}}
Reduce the fraction \frac{554}{1500} to lowest terms by extracting and canceling out 2.
C=\frac{277}{750}+\frac{\frac{7\times 1}{4\times 2}}{\frac{3}{4}}
Multiply \frac{7}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
C=\frac{277}{750}+\frac{\frac{7}{8}}{\frac{3}{4}}
Do the multiplications in the fraction \frac{7\times 1}{4\times 2}.
C=\frac{277}{750}+\frac{7}{8}\times \frac{4}{3}
Divide \frac{7}{8} by \frac{3}{4} by multiplying \frac{7}{8} by the reciprocal of \frac{3}{4}.
C=\frac{277}{750}+\frac{7\times 4}{8\times 3}
Multiply \frac{7}{8} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
C=\frac{277}{750}+\frac{28}{24}
Do the multiplications in the fraction \frac{7\times 4}{8\times 3}.
C=\frac{277}{750}+\frac{7}{6}
Reduce the fraction \frac{28}{24} to lowest terms by extracting and canceling out 4.
C=\frac{277}{750}+\frac{875}{750}
Least common multiple of 750 and 6 is 750. Convert \frac{277}{750} and \frac{7}{6} to fractions with denominator 750.
C=\frac{277+875}{750}
Since \frac{277}{750} and \frac{875}{750} have the same denominator, add them by adding their numerators.
C=\frac{1152}{750}
Add 277 and 875 to get 1152.
C=\frac{192}{125}
Reduce the fraction \frac{1152}{750} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}