Solve for C
C=\left(\frac{x}{ab}\right)^{2}\left(y^{2}+b^{2}\right)
x\neq 0\text{ and }a\neq 0\text{ and }b\neq 0
Solve for a
a=\frac{\sqrt{\frac{y^{2}+b^{2}}{C}}|x|}{b}
a=-\frac{\sqrt{\frac{y^{2}+b^{2}}{C}}|x|}{b}\text{, }b\neq 0\text{ and }C>0\text{ and }x\neq 0
Graph
Share
Copied to clipboard
b^{2}a^{2}x^{-2}C-y^{2}=b^{2}
Multiply both sides of the equation by b^{2}.
b^{2}a^{2}x^{-2}C=b^{2}+y^{2}
Add y^{2} to both sides.
\frac{a^{2}b^{2}}{x^{2}}C=y^{2}+b^{2}
The equation is in standard form.
\frac{\frac{a^{2}b^{2}}{x^{2}}Cx^{2}}{a^{2}b^{2}}=\frac{\left(y^{2}+b^{2}\right)x^{2}}{a^{2}b^{2}}
Divide both sides by b^{2}a^{2}x^{-2}.
C=\frac{\left(y^{2}+b^{2}\right)x^{2}}{a^{2}b^{2}}
Dividing by b^{2}a^{2}x^{-2} undoes the multiplication by b^{2}a^{2}x^{-2}.
C=\frac{x^{2}\left(y^{2}+b^{2}\right)}{\left(ab\right)^{2}}
Divide b^{2}+y^{2} by b^{2}a^{2}x^{-2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}