Solve for B
\left\{\begin{matrix}B=\frac{mv}{Rq}\text{, }&R\neq 0\text{ and }q\neq 0\\B\in \mathrm{R}\text{, }&\left(m=0\text{ and }q=0\text{ and }R\neq 0\right)\text{ or }\left(v=0\text{ and }R\neq 0\right)\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=\frac{mv}{Bq}\text{, }&v\neq 0\text{ and }m\neq 0\text{ and }q\neq 0\text{ and }B\neq 0\\R\neq 0\text{, }&v=0\text{ or }\left(q=0\text{ and }m=0\text{ and }v\neq 0\right)\text{ or }\left(B=0\text{ and }m=0\text{ and }v\neq 0\right)\end{matrix}\right.
Share
Copied to clipboard
BqvR=mv^{2}
Multiply both sides of the equation by R.
RqvB=mv^{2}
The equation is in standard form.
\frac{RqvB}{Rqv}=\frac{mv^{2}}{Rqv}
Divide both sides by qvR.
B=\frac{mv^{2}}{Rqv}
Dividing by qvR undoes the multiplication by qvR.
B=\frac{mv}{Rq}
Divide mv^{2} by qvR.
BqvR=mv^{2}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R.
\frac{BqvR}{Bqv}=\frac{mv^{2}}{Bqv}
Divide both sides by Bqv.
R=\frac{mv^{2}}{Bqv}
Dividing by Bqv undoes the multiplication by Bqv.
R=\frac{mv}{Bq}
Divide mv^{2} by Bqv.
R=\frac{mv}{Bq}\text{, }R\neq 0
Variable R cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}