Skip to main content
Solve for B
Tick mark Image
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

98BE=98\left(15.8\times 98-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply both sides of the equation by 98.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 15.8 and 98 to get 1548.4.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\times 42}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Subtract 1 from 43 to get 42.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 43 and 42 to get 1806.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 12^{3}
Subtract 43 from 55 to get 12.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 1728
Calculate 12 to the power of 3 and get 1728.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-40953.6
Multiply 23.7 and 1728 to get 40953.6.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}\right)-40953.6
Reorder the terms.
98BE=151743.2-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}-40953.6
Use the distributive property to multiply 98 by 1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}.
98BE=110789.6-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}
Subtract 40953.6 from 151743.2 to get 110789.6.
98EB=-\frac{3141537}{25\sqrt[3]{98}}-\frac{8722\times 98^{\frac{2}{3}}}{5}+110789.6
The equation is in standard form.
\frac{98EB}{98E}=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98E}
Divide both sides by 98E.
B=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98E}
Dividing by 98E undoes the multiplication by 98E.
B=\frac{-\frac{151333}{50\sqrt[3]{98}}+\frac{276974}{245}}{E}
Divide -\frac{7415317}{25\sqrt[3]{98}}+110789.6 by 98E.
98BE=98\left(15.8\times 98-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply both sides of the equation by 98.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 15.8 and 98 to get 1548.4.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\times 42}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Subtract 1 from 43 to get 42.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 43 and 42 to get 1806.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 12^{3}
Subtract 43 from 55 to get 12.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 1728
Calculate 12 to the power of 3 and get 1728.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-40953.6
Multiply 23.7 and 1728 to get 40953.6.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}\right)-40953.6
Reorder the terms.
98BE=151743.2-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}-40953.6
Use the distributive property to multiply 98 by 1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}.
98BE=110789.6-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}
Subtract 40953.6 from 151743.2 to get 110789.6.
98BE=-\frac{3141537}{25\sqrt[3]{98}}-\frac{8722\times 98^{\frac{2}{3}}}{5}+110789.6
The equation is in standard form.
\frac{98BE}{98B}=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98B}
Divide both sides by 98B.
E=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98B}
Dividing by 98B undoes the multiplication by 98B.
E=\frac{-\frac{151333}{50\sqrt[3]{98}}+\frac{276974}{245}}{B}
Divide -\frac{7415317}{25\sqrt[3]{98}}+110789.6 by 98B.