Solve for B
B=\frac{5539480-151333\times 98^{\frac{2}{3}}}{4900E}
E\neq 0
Solve for E
E=\frac{5539480-151333\times 98^{\frac{2}{3}}}{4900B}
B\neq 0
Share
Copied to clipboard
98BE=98\left(15.8\times 98-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply both sides of the equation by 98.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 15.8 and 98 to get 1548.4.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\times 42}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Subtract 1 from 43 to get 42.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 43 and 42 to get 1806.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 12^{3}
Subtract 43 from 55 to get 12.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 1728
Calculate 12 to the power of 3 and get 1728.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-40953.6
Multiply 23.7 and 1728 to get 40953.6.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}\right)-40953.6
Reorder the terms.
98BE=151743.2-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}-40953.6
Use the distributive property to multiply 98 by 1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}.
98BE=110789.6-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}
Subtract 40953.6 from 151743.2 to get 110789.6.
98EB=-\frac{3141537}{25\sqrt[3]{98}}-\frac{8722\times 98^{\frac{2}{3}}}{5}+110789.6
The equation is in standard form.
\frac{98EB}{98E}=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98E}
Divide both sides by 98E.
B=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98E}
Dividing by 98E undoes the multiplication by 98E.
B=\frac{-\frac{151333}{50\sqrt[3]{98}}+\frac{276974}{245}}{E}
Divide -\frac{7415317}{25\sqrt[3]{98}}+110789.6 by 98E.
98BE=98\left(15.8\times 98-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply both sides of the equation by 98.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\left(43-1\right)}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 15.8 and 98 to get 1548.4.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{43\times 42}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Subtract 1 from 43 to get 42.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\left(55-43\right)^{3}
Multiply 43 and 42 to get 1806.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 12^{3}
Subtract 43 from 55 to get 12.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-23.7\times 1728
Calculate 12 to the power of 3 and get 1728.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{98^{\frac{1}{3}}}\right)-40953.6
Multiply 23.7 and 1728 to get 40953.6.
98BE=98\left(1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}\right)-40953.6
Reorder the terms.
98BE=151743.2-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}-40953.6
Use the distributive property to multiply 98 by 1548.4-17.8\times 98^{\frac{2}{3}}-0.71\times \frac{1806}{\sqrt[3]{98}}.
98BE=110789.6-1744.4\times 98^{\frac{2}{3}}-69.58\times \frac{1806}{\sqrt[3]{98}}
Subtract 40953.6 from 151743.2 to get 110789.6.
98BE=-\frac{3141537}{25\sqrt[3]{98}}-\frac{8722\times 98^{\frac{2}{3}}}{5}+110789.6
The equation is in standard form.
\frac{98BE}{98B}=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98B}
Divide both sides by 98B.
E=\frac{-\frac{7415317}{25\sqrt[3]{98}}+110789.6}{98B}
Dividing by 98B undoes the multiplication by 98B.
E=\frac{-\frac{151333}{50\sqrt[3]{98}}+\frac{276974}{245}}{B}
Divide -\frac{7415317}{25\sqrt[3]{98}}+110789.6 by 98B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}