Solve for B
B=\frac{\sqrt{3}+1}{2C}
C\neq 0
Solve for C
C=\frac{\sqrt{3}+1}{2B}
B\neq 0
Share
Copied to clipboard
BC=\frac{\left(BC+1\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{BC+1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
BC=\frac{\left(BC+1\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
BC=\frac{BC\sqrt{3}+\sqrt{3}}{3}
Use the distributive property to multiply BC+1 by \sqrt{3}.
BC-\frac{BC\sqrt{3}+\sqrt{3}}{3}=0
Subtract \frac{BC\sqrt{3}+\sqrt{3}}{3} from both sides.
3BC-\left(BC\sqrt{3}+\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3BC-BC\sqrt{3}-\sqrt{3}=0
To find the opposite of BC\sqrt{3}+\sqrt{3}, find the opposite of each term.
3BC-BC\sqrt{3}=\sqrt{3}
Add \sqrt{3} to both sides. Anything plus zero gives itself.
\left(3C-C\sqrt{3}\right)B=\sqrt{3}
Combine all terms containing B.
\left(-\sqrt{3}C+3C\right)B=\sqrt{3}
The equation is in standard form.
\frac{\left(-\sqrt{3}C+3C\right)B}{-\sqrt{3}C+3C}=\frac{\sqrt{3}}{-\sqrt{3}C+3C}
Divide both sides by 3C-C\sqrt{3}.
B=\frac{\sqrt{3}}{-\sqrt{3}C+3C}
Dividing by 3C-C\sqrt{3} undoes the multiplication by 3C-C\sqrt{3}.
B=\frac{\sqrt{3}+1}{2C}
Divide \sqrt{3} by 3C-C\sqrt{3}.
BC=\frac{\left(BC+1\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{BC+1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
BC=\frac{\left(BC+1\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
BC=\frac{BC\sqrt{3}+\sqrt{3}}{3}
Use the distributive property to multiply BC+1 by \sqrt{3}.
BC-\frac{BC\sqrt{3}+\sqrt{3}}{3}=0
Subtract \frac{BC\sqrt{3}+\sqrt{3}}{3} from both sides.
3BC-\left(BC\sqrt{3}+\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3BC-BC\sqrt{3}-\sqrt{3}=0
To find the opposite of BC\sqrt{3}+\sqrt{3}, find the opposite of each term.
3BC-BC\sqrt{3}=\sqrt{3}
Add \sqrt{3} to both sides. Anything plus zero gives itself.
\left(3B-B\sqrt{3}\right)C=\sqrt{3}
Combine all terms containing C.
\left(-\sqrt{3}B+3B\right)C=\sqrt{3}
The equation is in standard form.
\frac{\left(-\sqrt{3}B+3B\right)C}{-\sqrt{3}B+3B}=\frac{\sqrt{3}}{-\sqrt{3}B+3B}
Divide both sides by 3B-B\sqrt{3}.
C=\frac{\sqrt{3}}{-\sqrt{3}B+3B}
Dividing by 3B-B\sqrt{3} undoes the multiplication by 3B-B\sqrt{3}.
C=\frac{\sqrt{3}+1}{2B}
Divide \sqrt{3} by 3B-B\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}