Skip to main content
Solve for B
Tick mark Image
Solve for C
Tick mark Image

Similar Problems from Web Search

Share

BC=\frac{\left(BC+1\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{BC+1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
BC=\frac{\left(BC+1\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
BC=\frac{BC\sqrt{3}+\sqrt{3}}{3}
Use the distributive property to multiply BC+1 by \sqrt{3}.
BC-\frac{BC\sqrt{3}+\sqrt{3}}{3}=0
Subtract \frac{BC\sqrt{3}+\sqrt{3}}{3} from both sides.
3BC-\left(BC\sqrt{3}+\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3BC-BC\sqrt{3}-\sqrt{3}=0
To find the opposite of BC\sqrt{3}+\sqrt{3}, find the opposite of each term.
3BC-BC\sqrt{3}=\sqrt{3}
Add \sqrt{3} to both sides. Anything plus zero gives itself.
\left(3C-C\sqrt{3}\right)B=\sqrt{3}
Combine all terms containing B.
\left(-\sqrt{3}C+3C\right)B=\sqrt{3}
The equation is in standard form.
\frac{\left(-\sqrt{3}C+3C\right)B}{-\sqrt{3}C+3C}=\frac{\sqrt{3}}{-\sqrt{3}C+3C}
Divide both sides by 3C-C\sqrt{3}.
B=\frac{\sqrt{3}}{-\sqrt{3}C+3C}
Dividing by 3C-C\sqrt{3} undoes the multiplication by 3C-C\sqrt{3}.
B=\frac{\sqrt{3}+1}{2C}
Divide \sqrt{3} by 3C-C\sqrt{3}.
BC=\frac{\left(BC+1\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{BC+1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
BC=\frac{\left(BC+1\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
BC=\frac{BC\sqrt{3}+\sqrt{3}}{3}
Use the distributive property to multiply BC+1 by \sqrt{3}.
BC-\frac{BC\sqrt{3}+\sqrt{3}}{3}=0
Subtract \frac{BC\sqrt{3}+\sqrt{3}}{3} from both sides.
3BC-\left(BC\sqrt{3}+\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3BC-BC\sqrt{3}-\sqrt{3}=0
To find the opposite of BC\sqrt{3}+\sqrt{3}, find the opposite of each term.
3BC-BC\sqrt{3}=\sqrt{3}
Add \sqrt{3} to both sides. Anything plus zero gives itself.
\left(3B-B\sqrt{3}\right)C=\sqrt{3}
Combine all terms containing C.
\left(-\sqrt{3}B+3B\right)C=\sqrt{3}
The equation is in standard form.
\frac{\left(-\sqrt{3}B+3B\right)C}{-\sqrt{3}B+3B}=\frac{\sqrt{3}}{-\sqrt{3}B+3B}
Divide both sides by 3B-B\sqrt{3}.
C=\frac{\sqrt{3}}{-\sqrt{3}B+3B}
Dividing by 3B-B\sqrt{3} undoes the multiplication by 3B-B\sqrt{3}.
C=\frac{\sqrt{3}+1}{2B}
Divide \sqrt{3} by 3B-B\sqrt{3}.