Solve for B
B=2\sqrt{89}-2\approx 16.867962264
B=-2\sqrt{89}-2\approx -20.867962264
Share
Copied to clipboard
B^{2}+4B-352=0
Multiply 4 and 88 to get 352.
B=\frac{-4±\sqrt{4^{2}-4\left(-352\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -352 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{-4±\sqrt{16-4\left(-352\right)}}{2}
Square 4.
B=\frac{-4±\sqrt{16+1408}}{2}
Multiply -4 times -352.
B=\frac{-4±\sqrt{1424}}{2}
Add 16 to 1408.
B=\frac{-4±4\sqrt{89}}{2}
Take the square root of 1424.
B=\frac{4\sqrt{89}-4}{2}
Now solve the equation B=\frac{-4±4\sqrt{89}}{2} when ± is plus. Add -4 to 4\sqrt{89}.
B=2\sqrt{89}-2
Divide -4+4\sqrt{89} by 2.
B=\frac{-4\sqrt{89}-4}{2}
Now solve the equation B=\frac{-4±4\sqrt{89}}{2} when ± is minus. Subtract 4\sqrt{89} from -4.
B=-2\sqrt{89}-2
Divide -4-4\sqrt{89} by 2.
B=2\sqrt{89}-2 B=-2\sqrt{89}-2
The equation is now solved.
B^{2}+4B-352=0
Multiply 4 and 88 to get 352.
B^{2}+4B=352
Add 352 to both sides. Anything plus zero gives itself.
B^{2}+4B+2^{2}=352+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
B^{2}+4B+4=352+4
Square 2.
B^{2}+4B+4=356
Add 352 to 4.
\left(B+2\right)^{2}=356
Factor B^{2}+4B+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(B+2\right)^{2}}=\sqrt{356}
Take the square root of both sides of the equation.
B+2=2\sqrt{89} B+2=-2\sqrt{89}
Simplify.
B=2\sqrt{89}-2 B=-2\sqrt{89}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}