Skip to main content
Solve for B
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

B=9x^{2}-3x+\frac{1}{4}-\left(3x+\frac{1}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-\frac{1}{2}\right)^{2}.
B=9x^{2}-3x+\frac{1}{4}-\left(9x^{2}+3x+\frac{1}{4}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+\frac{1}{2}\right)^{2}.
B=9x^{2}-3x+\frac{1}{4}-9x^{2}-3x-\frac{1}{4}
To find the opposite of 9x^{2}+3x+\frac{1}{4}, find the opposite of each term.
B=-3x+\frac{1}{4}-3x-\frac{1}{4}
Combine 9x^{2} and -9x^{2} to get 0.
B=-6x+\frac{1}{4}-\frac{1}{4}
Combine -3x and -3x to get -6x.
B=-6x
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
B=9x^{2}-3x+\frac{1}{4}-\left(3x+\frac{1}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-\frac{1}{2}\right)^{2}.
B=9x^{2}-3x+\frac{1}{4}-\left(9x^{2}+3x+\frac{1}{4}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+\frac{1}{2}\right)^{2}.
B=9x^{2}-3x+\frac{1}{4}-9x^{2}-3x-\frac{1}{4}
To find the opposite of 9x^{2}+3x+\frac{1}{4}, find the opposite of each term.
B=-3x+\frac{1}{4}-3x-\frac{1}{4}
Combine 9x^{2} and -9x^{2} to get 0.
B=-6x+\frac{1}{4}-\frac{1}{4}
Combine -3x and -3x to get -6x.
B=-6x
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
-6x=B
Swap sides so that all variable terms are on the left hand side.
\frac{-6x}{-6}=\frac{B}{-6}
Divide both sides by -6.
x=\frac{B}{-6}
Dividing by -6 undoes the multiplication by -6.
x=-\frac{B}{6}
Divide B by -6.