Skip to main content
Solve for B
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

B=\frac{\left(\frac{8x^{8}}{27}\right)^{2}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 3 and get 27.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
To raise \frac{8x^{8}}{27} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{9}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\frac{9^{-3}}{\left(2x^{5}\right)^{-3}}}
To raise \frac{9}{2x^{5}} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\left(8x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Divide \frac{\left(8x^{8}\right)^{2}}{27^{2}} by \frac{9^{-3}}{\left(2x^{5}\right)^{-3}} by multiplying \frac{\left(8x^{8}\right)^{2}}{27^{2}} by the reciprocal of \frac{9^{-3}}{\left(2x^{5}\right)^{-3}}.
B=\frac{8^{2}\left(x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(8x^{8}\right)^{2}.
B=\frac{8^{2}x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
B=\frac{64x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Calculate 8 to the power of 2 and get 64.
B=\frac{64x^{16}\times 2^{-3}\left(x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(2x^{5}\right)^{-3}.
B=\frac{64x^{16}\times 2^{-3}x^{-15}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
B=\frac{64x^{16}\times \frac{1}{8}x^{-15}}{27^{2}\times 9^{-3}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
B=\frac{8x^{16}x^{-15}}{27^{2}\times 9^{-3}}
Multiply 64 and \frac{1}{8} to get 8.
B=\frac{8x^{1}}{27^{2}\times 9^{-3}}
To multiply powers of the same base, add their exponents. Add 16 and -15 to get 1.
B=\frac{8x^{1}}{729\times 9^{-3}}
Calculate 27 to the power of 2 and get 729.
B=\frac{8x^{1}}{729\times \frac{1}{729}}
Calculate 9 to the power of -3 and get \frac{1}{729}.
B=\frac{8x^{1}}{1}
Multiply 729 and \frac{1}{729} to get 1.
B=8x^{1}
Anything divided by one gives itself.
B=8x
Calculate x to the power of 1 and get x.
B=\frac{\left(\frac{8x^{8}}{27}\right)^{2}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 3 and get 27.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
To raise \frac{8x^{8}}{27} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{9}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\frac{9^{-3}}{\left(2x^{5}\right)^{-3}}}
To raise \frac{9}{2x^{5}} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\left(8x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Divide \frac{\left(8x^{8}\right)^{2}}{27^{2}} by \frac{9^{-3}}{\left(2x^{5}\right)^{-3}} by multiplying \frac{\left(8x^{8}\right)^{2}}{27^{2}} by the reciprocal of \frac{9^{-3}}{\left(2x^{5}\right)^{-3}}.
B=\frac{8^{2}\left(x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(8x^{8}\right)^{2}.
B=\frac{8^{2}x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
B=\frac{64x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Calculate 8 to the power of 2 and get 64.
B=\frac{64x^{16}\times 2^{-3}\left(x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(2x^{5}\right)^{-3}.
B=\frac{64x^{16}\times 2^{-3}x^{-15}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
B=\frac{64x^{16}\times \frac{1}{8}x^{-15}}{27^{2}\times 9^{-3}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
B=\frac{8x^{16}x^{-15}}{27^{2}\times 9^{-3}}
Multiply 64 and \frac{1}{8} to get 8.
B=\frac{8x^{1}}{27^{2}\times 9^{-3}}
To multiply powers of the same base, add their exponents. Add 16 and -15 to get 1.
B=\frac{8x^{1}}{729\times 9^{-3}}
Calculate 27 to the power of 2 and get 729.
B=\frac{8x^{1}}{729\times \frac{1}{729}}
Calculate 9 to the power of -3 and get \frac{1}{729}.
B=\frac{8x^{1}}{1}
Multiply 729 and \frac{1}{729} to get 1.
B=8x^{1}
Anything divided by one gives itself.
B=8x
Calculate x to the power of 1 and get x.
8x=B
Swap sides so that all variable terms are on the left hand side.
\frac{8x}{8}=\frac{B}{8}
Divide both sides by 8.
x=\frac{B}{8}
Dividing by 8 undoes the multiplication by 8.