Solve for B
B=8x
x\neq 0
Solve for x
x=\frac{B}{8}
B\neq 0
Graph
Share
Copied to clipboard
B=\frac{\left(\frac{8x^{8}}{27}\right)^{2}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 3 and get 27.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
To raise \frac{8x^{8}}{27} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{9}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\frac{9^{-3}}{\left(2x^{5}\right)^{-3}}}
To raise \frac{9}{2x^{5}} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\left(8x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Divide \frac{\left(8x^{8}\right)^{2}}{27^{2}} by \frac{9^{-3}}{\left(2x^{5}\right)^{-3}} by multiplying \frac{\left(8x^{8}\right)^{2}}{27^{2}} by the reciprocal of \frac{9^{-3}}{\left(2x^{5}\right)^{-3}}.
B=\frac{8^{2}\left(x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(8x^{8}\right)^{2}.
B=\frac{8^{2}x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
B=\frac{64x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Calculate 8 to the power of 2 and get 64.
B=\frac{64x^{16}\times 2^{-3}\left(x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(2x^{5}\right)^{-3}.
B=\frac{64x^{16}\times 2^{-3}x^{-15}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
B=\frac{64x^{16}\times \frac{1}{8}x^{-15}}{27^{2}\times 9^{-3}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
B=\frac{8x^{16}x^{-15}}{27^{2}\times 9^{-3}}
Multiply 64 and \frac{1}{8} to get 8.
B=\frac{8x^{1}}{27^{2}\times 9^{-3}}
To multiply powers of the same base, add their exponents. Add 16 and -15 to get 1.
B=\frac{8x^{1}}{729\times 9^{-3}}
Calculate 27 to the power of 2 and get 729.
B=\frac{8x^{1}}{729\times \frac{1}{729}}
Calculate 9 to the power of -3 and get \frac{1}{729}.
B=\frac{8x^{1}}{1}
Multiply 729 and \frac{1}{729} to get 1.
B=8x^{1}
Anything divided by one gives itself.
B=8x
Calculate x to the power of 1 and get x.
B=\frac{\left(\frac{8x^{8}}{27}\right)^{2}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 3 and get 27.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{3^{2}}{2x^{5}}\right)^{-3}}
To raise \frac{8x^{8}}{27} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\left(\frac{9}{2x^{5}}\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
B=\frac{\frac{\left(8x^{8}\right)^{2}}{27^{2}}}{\frac{9^{-3}}{\left(2x^{5}\right)^{-3}}}
To raise \frac{9}{2x^{5}} to a power, raise both numerator and denominator to the power and then divide.
B=\frac{\left(8x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Divide \frac{\left(8x^{8}\right)^{2}}{27^{2}} by \frac{9^{-3}}{\left(2x^{5}\right)^{-3}} by multiplying \frac{\left(8x^{8}\right)^{2}}{27^{2}} by the reciprocal of \frac{9^{-3}}{\left(2x^{5}\right)^{-3}}.
B=\frac{8^{2}\left(x^{8}\right)^{2}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(8x^{8}\right)^{2}.
B=\frac{8^{2}x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
B=\frac{64x^{16}\times \left(2x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Calculate 8 to the power of 2 and get 64.
B=\frac{64x^{16}\times 2^{-3}\left(x^{5}\right)^{-3}}{27^{2}\times 9^{-3}}
Expand \left(2x^{5}\right)^{-3}.
B=\frac{64x^{16}\times 2^{-3}x^{-15}}{27^{2}\times 9^{-3}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
B=\frac{64x^{16}\times \frac{1}{8}x^{-15}}{27^{2}\times 9^{-3}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
B=\frac{8x^{16}x^{-15}}{27^{2}\times 9^{-3}}
Multiply 64 and \frac{1}{8} to get 8.
B=\frac{8x^{1}}{27^{2}\times 9^{-3}}
To multiply powers of the same base, add their exponents. Add 16 and -15 to get 1.
B=\frac{8x^{1}}{729\times 9^{-3}}
Calculate 27 to the power of 2 and get 729.
B=\frac{8x^{1}}{729\times \frac{1}{729}}
Calculate 9 to the power of -3 and get \frac{1}{729}.
B=\frac{8x^{1}}{1}
Multiply 729 and \frac{1}{729} to get 1.
B=8x^{1}
Anything divided by one gives itself.
B=8x
Calculate x to the power of 1 and get x.
8x=B
Swap sides so that all variable terms are on the left hand side.
\frac{8x}{8}=\frac{B}{8}
Divide both sides by 8.
x=\frac{B}{8}
Dividing by 8 undoes the multiplication by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}