Skip to main content
Solve for B
Tick mark Image
Assign B
Tick mark Image

Similar Problems from Web Search

Share

B=\frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{\left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}} by multiplying numerator and denominator by 5+2\sqrt{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{5^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\times 2}
The square of \sqrt{2} is 2.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-8}
Multiply 4 and 2 to get 8.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{17}
Subtract 8 from 25 to get 17.
B=\frac{5\sqrt{2}+2\left(\sqrt{2}\right)^{2}-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Apply the distributive property by multiplying each term of \sqrt{2}-\sqrt{7} by each term of 5+2\sqrt{2}.
B=\frac{5\sqrt{2}+2\times 2-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
The square of \sqrt{2} is 2.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
Multiply 2 and 2 to get 4.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14}}{17}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
B=\frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}
Divide each term of 5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14} by 17 to get \frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}.