Evaluate
\frac{252B}{5B+144}
Differentiate w.r.t. B
\frac{36288}{\left(5B+144\right)^{2}}
Share
Copied to clipboard
\frac{B}{\frac{4\times 36}{252}+\frac{5B}{252}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 252 is 252. Multiply \frac{4}{7} times \frac{36}{36}.
\frac{B}{\frac{4\times 36+5B}{252}}
Since \frac{4\times 36}{252} and \frac{5B}{252} have the same denominator, add them by adding their numerators.
\frac{B}{\frac{144+5B}{252}}
Do the multiplications in 4\times 36+5B.
\frac{B\times 252}{144+5B}
Divide B by \frac{144+5B}{252} by multiplying B by the reciprocal of \frac{144+5B}{252}.
\frac{\mathrm{d}}{\mathrm{d}B}(\frac{B}{\frac{4\times 36}{252}+\frac{5B}{252}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 252 is 252. Multiply \frac{4}{7} times \frac{36}{36}.
\frac{\mathrm{d}}{\mathrm{d}B}(\frac{B}{\frac{4\times 36+5B}{252}})
Since \frac{4\times 36}{252} and \frac{5B}{252} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}B}(\frac{B}{\frac{144+5B}{252}})
Do the multiplications in 4\times 36+5B.
\frac{\mathrm{d}}{\mathrm{d}B}(\frac{B\times 252}{144+5B})
Divide B by \frac{144+5B}{252} by multiplying B by the reciprocal of \frac{144+5B}{252}.
\frac{\left(5B^{1}+144\right)\frac{\mathrm{d}}{\mathrm{d}B}(252B^{1})-252B^{1}\frac{\mathrm{d}}{\mathrm{d}B}(5B^{1}+144)}{\left(5B^{1}+144\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(5B^{1}+144\right)\times 252B^{1-1}-252B^{1}\times 5B^{1-1}}{\left(5B^{1}+144\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(5B^{1}+144\right)\times 252B^{0}-252B^{1}\times 5B^{0}}{\left(5B^{1}+144\right)^{2}}
Do the arithmetic.
\frac{5B^{1}\times 252B^{0}+144\times 252B^{0}-252B^{1}\times 5B^{0}}{\left(5B^{1}+144\right)^{2}}
Expand using distributive property.
\frac{5\times 252B^{1}+144\times 252B^{0}-252\times 5B^{1}}{\left(5B^{1}+144\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{1260B^{1}+36288B^{0}-1260B^{1}}{\left(5B^{1}+144\right)^{2}}
Do the arithmetic.
\frac{\left(1260-1260\right)B^{1}+36288B^{0}}{\left(5B^{1}+144\right)^{2}}
Combine like terms.
\frac{36288B^{0}}{\left(5B^{1}+144\right)^{2}}
Subtract 1260 from 1260.
\frac{36288B^{0}}{\left(5B+144\right)^{2}}
For any term t, t^{1}=t.
\frac{36288\times 1}{\left(5B+144\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{36288}{\left(5B+144\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}