Solve for A (complex solution)
\left\{\begin{matrix}\\A=0\text{, }&\text{unconditionally}\\A\in \mathrm{C}\text{, }&F=\frac{C}{3}\end{matrix}\right.
Solve for C (complex solution)
\left\{\begin{matrix}\\C=3F\text{, }&\text{unconditionally}\\C\in \mathrm{C}\text{, }&A=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}\\A=0\text{, }&\text{unconditionally}\\A\in \mathrm{R}\text{, }&F=\frac{C}{3}\end{matrix}\right.
Solve for C
\left\{\begin{matrix}\\C=3F\text{, }&\text{unconditionally}\\C\in \mathrm{R}\text{, }&A=0\end{matrix}\right.
Share
Copied to clipboard
AF-\frac{1}{3}AC=0
Subtract \frac{1}{3}AC from both sides.
\left(F-\frac{1}{3}C\right)A=0
Combine all terms containing A.
\left(-\frac{C}{3}+F\right)A=0
The equation is in standard form.
A=0
Divide 0 by F-\frac{1}{3}C.
\frac{1}{3}AC=AF
Swap sides so that all variable terms are on the left hand side.
\frac{A}{3}C=AF
The equation is in standard form.
\frac{3\times \frac{A}{3}C}{A}=\frac{3AF}{A}
Divide both sides by \frac{1}{3}A.
C=\frac{3AF}{A}
Dividing by \frac{1}{3}A undoes the multiplication by \frac{1}{3}A.
C=3F
Divide AF by \frac{1}{3}A.
AF-\frac{1}{3}AC=0
Subtract \frac{1}{3}AC from both sides.
\left(F-\frac{1}{3}C\right)A=0
Combine all terms containing A.
\left(-\frac{C}{3}+F\right)A=0
The equation is in standard form.
A=0
Divide 0 by F-\frac{1}{3}C.
\frac{1}{3}AC=AF
Swap sides so that all variable terms are on the left hand side.
\frac{A}{3}C=AF
The equation is in standard form.
\frac{3\times \frac{A}{3}C}{A}=\frac{3AF}{A}
Divide both sides by \frac{1}{3}A.
C=\frac{3AF}{A}
Dividing by \frac{1}{3}A undoes the multiplication by \frac{1}{3}A.
C=3F
Divide AF by \frac{1}{3}A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}