Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{5C\left(y-B\right)}{y}\text{, }&y\neq 0\\A\in \mathrm{C}\text{, }&\left(B=0\text{ or }C=0\right)\text{ and }y=0\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{Ay}{5C}+y\text{, }&C\neq 0\\B\in \mathrm{C}\text{, }&\left(A=0\text{ or }y=0\right)\text{ and }C=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{5C\left(y-B\right)}{y}\text{, }&y\neq 0\\A\in \mathrm{R}\text{, }&\left(B=0\text{ or }C=0\right)\text{ and }y=0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{Ay}{5C}+y\text{, }&C\neq 0\\B\in \mathrm{R}\text{, }&\left(A=0\text{ or }y=0\right)\text{ and }C=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Ay=\left(5y-5B\right)C
Use the distributive property to multiply 5 by y-B.
Ay=5yC-5BC
Use the distributive property to multiply 5y-5B by C.
yA=5Cy-5BC
The equation is in standard form.
\frac{yA}{y}=\frac{5C\left(y-B\right)}{y}
Divide both sides by y.
A=\frac{5C\left(y-B\right)}{y}
Dividing by y undoes the multiplication by y.
Ay=\left(5y-5B\right)C
Use the distributive property to multiply 5 by y-B.
Ay=5yC-5BC
Use the distributive property to multiply 5y-5B by C.
5yC-5BC=Ay
Swap sides so that all variable terms are on the left hand side.
-5BC=Ay-5yC
Subtract 5yC from both sides.
\left(-5C\right)B=Ay-5Cy
The equation is in standard form.
\frac{\left(-5C\right)B}{-5C}=\frac{y\left(A-5C\right)}{-5C}
Divide both sides by -5C.
B=\frac{y\left(A-5C\right)}{-5C}
Dividing by -5C undoes the multiplication by -5C.
B=-\frac{Ay}{5C}+y
Divide y\left(A-5C\right) by -5C.
Ay=\left(5y-5B\right)C
Use the distributive property to multiply 5 by y-B.
Ay=5yC-5BC
Use the distributive property to multiply 5y-5B by C.
yA=5Cy-5BC
The equation is in standard form.
\frac{yA}{y}=\frac{5C\left(y-B\right)}{y}
Divide both sides by y.
A=\frac{5C\left(y-B\right)}{y}
Dividing by y undoes the multiplication by y.
Ay=\left(5y-5B\right)C
Use the distributive property to multiply 5 by y-B.
Ay=5yC-5BC
Use the distributive property to multiply 5y-5B by C.
5yC-5BC=Ay
Swap sides so that all variable terms are on the left hand side.
-5BC=Ay-5yC
Subtract 5yC from both sides.
\left(-5C\right)B=Ay-5Cy
The equation is in standard form.
\frac{\left(-5C\right)B}{-5C}=\frac{y\left(A-5C\right)}{-5C}
Divide both sides by -5C.
B=\frac{y\left(A-5C\right)}{-5C}
Dividing by -5C undoes the multiplication by -5C.
B=-\frac{Ay}{5C}+y
Divide y\left(A-5C\right) by -5C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}