Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for A (complex solution)
Tick mark Image
Solve for A
Tick mark Image
Graph

Similar Problems from Web Search

Share

Ax\left(A-3i\right)\left(A+3i\right)+3A^{3}=3A\left(A-3i\right)\left(A+3i\right)
Multiply both sides of the equation by \left(A-3i\right)\left(A+3i\right).
\left(xA^{2}-3iAx\right)\left(A+3i\right)+3A^{3}=3A\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply Ax by A-3i.
xA^{3}+9xA+3A^{3}=3A\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply xA^{2}-3iAx by A+3i and combine like terms.
xA^{3}+9xA+3A^{3}=\left(3A^{2}-9iA\right)\left(A+3i\right)
Use the distributive property to multiply 3A by A-3i.
xA^{3}+9xA+3A^{3}=3A^{3}+27A
Use the distributive property to multiply 3A^{2}-9iA by A+3i and combine like terms.
xA^{3}+9xA=3A^{3}+27A-3A^{3}
Subtract 3A^{3} from both sides.
xA^{3}+9xA=27A
Combine 3A^{3} and -3A^{3} to get 0.
\left(A^{3}+9A\right)x=27A
Combine all terms containing x.
\frac{\left(A^{3}+9A\right)x}{A^{3}+9A}=\frac{27A}{A^{3}+9A}
Divide both sides by A^{3}+9A.
x=\frac{27A}{A^{3}+9A}
Dividing by A^{3}+9A undoes the multiplication by A^{3}+9A.
x=\frac{27}{A^{2}+9}
Divide 27A by A^{3}+9A.
Ax\left(A^{2}+9\right)+3A^{3}=3A\left(A^{2}+9\right)
Multiply both sides of the equation by A^{2}+9.
xA^{3}+9Ax+3A^{3}=3A\left(A^{2}+9\right)
Use the distributive property to multiply Ax by A^{2}+9.
xA^{3}+9Ax+3A^{3}=3A^{3}+27A
Use the distributive property to multiply 3A by A^{2}+9.
xA^{3}+9Ax=3A^{3}+27A-3A^{3}
Subtract 3A^{3} from both sides.
xA^{3}+9Ax=27A
Combine 3A^{3} and -3A^{3} to get 0.
\left(A^{3}+9A\right)x=27A
Combine all terms containing x.
\frac{\left(A^{3}+9A\right)x}{A^{3}+9A}=\frac{27A}{A^{3}+9A}
Divide both sides by A^{3}+9A.
x=\frac{27A}{A^{3}+9A}
Dividing by A^{3}+9A undoes the multiplication by A^{3}+9A.
x=\frac{27}{A^{2}+9}
Divide 27A by A^{3}+9A.