Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{27}{A^{2}+9}\text{, }&A\neq -3i\text{ and }A\neq 3i\\x\in \mathrm{C}\text{, }&A=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{27}{A^{2}+9}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&A=0\end{matrix}\right.
Solve for A (complex solution)
\left\{\begin{matrix}\\A=0\text{, }&\text{unconditionally}\\A=-3\sqrt{-1+\frac{3}{x}}\text{; }A=3\sqrt{-1+\frac{3}{x}}\text{, }&x\neq 0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}\\A=0\text{, }&\text{unconditionally}\\A=3\sqrt{-1+\frac{3}{x}}\text{; }A=-3\sqrt{-1+\frac{3}{x}}\text{, }&x>0\text{ and }x\leq 3\end{matrix}\right.
Graph
Share
Copied to clipboard
Ax\left(A-3i\right)\left(A+3i\right)+3A^{3}=3A\left(A-3i\right)\left(A+3i\right)
Multiply both sides of the equation by \left(A-3i\right)\left(A+3i\right).
\left(xA^{2}-3iAx\right)\left(A+3i\right)+3A^{3}=3A\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply Ax by A-3i.
xA^{3}+9xA+3A^{3}=3A\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply xA^{2}-3iAx by A+3i and combine like terms.
xA^{3}+9xA+3A^{3}=\left(3A^{2}-9iA\right)\left(A+3i\right)
Use the distributive property to multiply 3A by A-3i.
xA^{3}+9xA+3A^{3}=3A^{3}+27A
Use the distributive property to multiply 3A^{2}-9iA by A+3i and combine like terms.
xA^{3}+9xA=3A^{3}+27A-3A^{3}
Subtract 3A^{3} from both sides.
xA^{3}+9xA=27A
Combine 3A^{3} and -3A^{3} to get 0.
\left(A^{3}+9A\right)x=27A
Combine all terms containing x.
\frac{\left(A^{3}+9A\right)x}{A^{3}+9A}=\frac{27A}{A^{3}+9A}
Divide both sides by A^{3}+9A.
x=\frac{27A}{A^{3}+9A}
Dividing by A^{3}+9A undoes the multiplication by A^{3}+9A.
x=\frac{27}{A^{2}+9}
Divide 27A by A^{3}+9A.
Ax\left(A^{2}+9\right)+3A^{3}=3A\left(A^{2}+9\right)
Multiply both sides of the equation by A^{2}+9.
xA^{3}+9Ax+3A^{3}=3A\left(A^{2}+9\right)
Use the distributive property to multiply Ax by A^{2}+9.
xA^{3}+9Ax+3A^{3}=3A^{3}+27A
Use the distributive property to multiply 3A by A^{2}+9.
xA^{3}+9Ax=3A^{3}+27A-3A^{3}
Subtract 3A^{3} from both sides.
xA^{3}+9Ax=27A
Combine 3A^{3} and -3A^{3} to get 0.
\left(A^{3}+9A\right)x=27A
Combine all terms containing x.
\frac{\left(A^{3}+9A\right)x}{A^{3}+9A}=\frac{27A}{A^{3}+9A}
Divide both sides by A^{3}+9A.
x=\frac{27A}{A^{3}+9A}
Dividing by A^{3}+9A undoes the multiplication by A^{3}+9A.
x=\frac{27}{A^{2}+9}
Divide 27A by A^{3}+9A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}