Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{3\times \left(\frac{A}{r}\right)^{2}t}{\pi }-4r\text{, }&r\neq 0\\h\in \mathrm{C}\text{, }&r=0\text{ and }\left(A=0\text{ or }t=0\right)\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{3\times \left(\frac{A}{r}\right)^{2}t}{\pi }-4r\text{, }&r\neq 0\\h\in \mathrm{R}\text{, }&\left(A=0\text{ or }t=0\right)\text{ and }r=0\end{matrix}\right.
Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{it^{-\frac{1}{2}}\sqrt{-3\pi \left(4r+h\right)}r}{3}\text{; }A=\frac{it^{-\frac{1}{2}}\sqrt{-3\pi \left(4r+h\right)}r}{3}\text{, }&t\neq 0\\A\in \mathrm{C}\text{, }&\left(r=0\text{ or }r=-\frac{h}{4}\right)\text{ and }t=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{\sqrt{\frac{3\pi \left(4r+h\right)r^{2}}{t}}}{3}\text{; }A=-\frac{\sqrt{\frac{3\pi \left(4r+h\right)r^{2}}{t}}}{3}\text{, }&\left(t>0\text{ or }h\leq -4r\right)\text{ and }\left(t<0\text{ or }h\geq -4r\right)\text{ and }t\neq 0\\A\in \mathrm{R}\text{, }&\left(r=0\text{ or }r=-\frac{h}{4}\right)\text{ and }t=0\end{matrix}\right.
Share
Copied to clipboard
A^{2}t=\frac{1}{3}\pi r^{2}h+\frac{4}{3}\pi r^{3}
Multiply A and A to get A^{2}.
\frac{1}{3}\pi r^{2}h+\frac{4}{3}\pi r^{3}=A^{2}t
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}\pi r^{2}h=A^{2}t-\frac{4}{3}\pi r^{3}
Subtract \frac{4}{3}\pi r^{3} from both sides.
\frac{\pi r^{2}}{3}h=tA^{2}-\frac{4\pi r^{3}}{3}
The equation is in standard form.
\frac{3\times \frac{\pi r^{2}}{3}h}{\pi r^{2}}=\frac{3\left(tA^{2}-\frac{4\pi r^{3}}{3}\right)}{\pi r^{2}}
Divide both sides by \frac{1}{3}\pi r^{2}.
h=\frac{3\left(tA^{2}-\frac{4\pi r^{3}}{3}\right)}{\pi r^{2}}
Dividing by \frac{1}{3}\pi r^{2} undoes the multiplication by \frac{1}{3}\pi r^{2}.
h=\frac{3tA^{2}}{\pi r^{2}}-4r
Divide tA^{2}-\frac{4\pi r^{3}}{3} by \frac{1}{3}\pi r^{2}.
A^{2}t=\frac{1}{3}\pi r^{2}h+\frac{4}{3}\pi r^{3}
Multiply A and A to get A^{2}.
\frac{1}{3}\pi r^{2}h+\frac{4}{3}\pi r^{3}=A^{2}t
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}\pi r^{2}h=A^{2}t-\frac{4}{3}\pi r^{3}
Subtract \frac{4}{3}\pi r^{3} from both sides.
\frac{\pi r^{2}}{3}h=tA^{2}-\frac{4\pi r^{3}}{3}
The equation is in standard form.
\frac{3\times \frac{\pi r^{2}}{3}h}{\pi r^{2}}=\frac{3\left(tA^{2}-\frac{4\pi r^{3}}{3}\right)}{\pi r^{2}}
Divide both sides by \frac{1}{3}\pi r^{2}.
h=\frac{3\left(tA^{2}-\frac{4\pi r^{3}}{3}\right)}{\pi r^{2}}
Dividing by \frac{1}{3}\pi r^{2} undoes the multiplication by \frac{1}{3}\pi r^{2}.
h=\frac{3tA^{2}}{\pi r^{2}}-4r
Divide tA^{2}-\frac{4r^{3}\pi }{3} by \frac{1}{3}\pi r^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}