Solve for A
A=\frac{72\sqrt{3}\left(\sqrt{2}+1\right)}{l}
l\neq 0
Solve for l
l=\frac{72\sqrt{3}\left(\sqrt{2}+1\right)}{A}
A\neq 0
Share
Copied to clipboard
Al=\left(72\sqrt{2}+72\right)\sqrt{3}
Use the distributive property to multiply 6 by 12\sqrt{2}+12.
Al=72\sqrt{2}\sqrt{3}+72\sqrt{3}
Use the distributive property to multiply 72\sqrt{2}+72 by \sqrt{3}.
Al=72\sqrt{6}+72\sqrt{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
lA=72\sqrt{3}+72\sqrt{6}
The equation is in standard form.
\frac{lA}{l}=\frac{72\sqrt{3}+72\sqrt{6}}{l}
Divide both sides by l.
A=\frac{72\sqrt{3}+72\sqrt{6}}{l}
Dividing by l undoes the multiplication by l.
A=\frac{72\left(\sqrt{3}+\sqrt{6}\right)}{l}
Divide 72\sqrt{6}+72\sqrt{3} by l.
Al=\left(72\sqrt{2}+72\right)\sqrt{3}
Use the distributive property to multiply 6 by 12\sqrt{2}+12.
Al=72\sqrt{2}\sqrt{3}+72\sqrt{3}
Use the distributive property to multiply 72\sqrt{2}+72 by \sqrt{3}.
Al=72\sqrt{6}+72\sqrt{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Al=72\sqrt{3}+72\sqrt{6}
The equation is in standard form.
\frac{Al}{A}=\frac{72\sqrt{3}+72\sqrt{6}}{A}
Divide both sides by A.
l=\frac{72\sqrt{3}+72\sqrt{6}}{A}
Dividing by A undoes the multiplication by A.
l=\frac{72\left(\sqrt{3}+\sqrt{6}\right)}{A}
Divide 72\sqrt{6}+72\sqrt{3} by A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}