Solve for A
\left\{\begin{matrix}A=\frac{\frac{3N}{20}+1.42}{h}\text{, }&h\neq 0\\A\in \mathrm{R}\text{, }&N=-\frac{142}{15}\text{ and }h=0\end{matrix}\right.
Solve for N
N=\frac{20Ah}{3}-\frac{142}{15}
Share
Copied to clipboard
Ah=1.57+0.15N-0.15
Use the distributive property to multiply N-1 by 0.15.
Ah=1.42+0.15N
Subtract 0.15 from 1.57 to get 1.42.
hA=\frac{3N}{20}+1.42
The equation is in standard form.
\frac{hA}{h}=\frac{\frac{3N}{20}+1.42}{h}
Divide both sides by h.
A=\frac{\frac{3N}{20}+1.42}{h}
Dividing by h undoes the multiplication by h.
A=\frac{3N+28.4}{20h}
Divide 1.42+\frac{3N}{20} by h.
Ah=1.57+0.15N-0.15
Use the distributive property to multiply N-1 by 0.15.
Ah=1.42+0.15N
Subtract 0.15 from 1.57 to get 1.42.
1.42+0.15N=Ah
Swap sides so that all variable terms are on the left hand side.
0.15N=Ah-1.42
Subtract 1.42 from both sides.
\frac{0.15N}{0.15}=\frac{Ah-1.42}{0.15}
Divide both sides of the equation by 0.15, which is the same as multiplying both sides by the reciprocal of the fraction.
N=\frac{Ah-1.42}{0.15}
Dividing by 0.15 undoes the multiplication by 0.15.
N=\frac{20Ah}{3}-\frac{142}{15}
Divide Ah-1.42 by 0.15 by multiplying Ah-1.42 by the reciprocal of 0.15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}