Solve for n
\left\{\begin{matrix}n=\frac{x_{n}}{9}+\frac{A_{m}}{18x_{m}}\text{, }&x_{m}\neq 0\\n\in \mathrm{R}\text{, }&A_{m}=0\text{ and }x_{m}=0\end{matrix}\right.
Solve for A_m
A_{m}=2x_{m}\left(9n-x_{n}\right)
Share
Copied to clipboard
A_{m}=x_{m}\left(18n-2x_{n}\right)
Combine -x_{n} and -x_{n} to get -2x_{n}.
A_{m}=18x_{m}n-2x_{m}x_{n}
Use the distributive property to multiply x_{m} by 18n-2x_{n}.
18x_{m}n-2x_{m}x_{n}=A_{m}
Swap sides so that all variable terms are on the left hand side.
18x_{m}n=A_{m}+2x_{m}x_{n}
Add 2x_{m}x_{n} to both sides.
18x_{m}n=2x_{m}x_{n}+A_{m}
The equation is in standard form.
\frac{18x_{m}n}{18x_{m}}=\frac{2x_{m}x_{n}+A_{m}}{18x_{m}}
Divide both sides by 18x_{m}.
n=\frac{2x_{m}x_{n}+A_{m}}{18x_{m}}
Dividing by 18x_{m} undoes the multiplication by 18x_{m}.
n=\frac{x_{n}}{9}+\frac{A_{m}}{18x_{m}}
Divide A_{m}+2x_{m}x_{n} by 18x_{m}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}