Solve for E (complex solution)
E=A_{j}d_{j}^{d}
d=0\text{ or }d_{j}\neq 0
Solve for E
E=A_{j}d_{j}^{d}
d_{j}>0\text{ or }\left(Denominator(d)\text{bmod}2=1\text{ and }d_{j}<0\right)
Solve for A_j (complex solution)
A_{j}=\frac{E}{d_{j}^{d}}
d=0\text{ or }d_{j}\neq 0
Solve for A_j
A_{j}=\frac{E}{d_{j}^{d}}
d_{j}>0\text{ or }\left(Denominator(d)\text{bmod}2=1\text{ and }d_{j}<0\right)
Share
Copied to clipboard
\frac{E}{d_{j}^{d}}=A_{j}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{d_{j}^{d}}E=A_{j}
The equation is in standard form.
\frac{\frac{1}{d_{j}^{d}}Ed_{j}^{d}}{1}=\frac{A_{j}d_{j}^{d}}{1}
Divide both sides by d_{j}^{-d}.
E=\frac{A_{j}d_{j}^{d}}{1}
Dividing by d_{j}^{-d} undoes the multiplication by d_{j}^{-d}.
E=A_{j}d_{j}^{d}
Divide A_{j} by d_{j}^{-d}.
\frac{E}{d_{j}^{d}}=A_{j}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{d_{j}^{d}}E=A_{j}
The equation is in standard form.
\frac{\frac{1}{d_{j}^{d}}Ed_{j}^{d}}{1}=\frac{A_{j}d_{j}^{d}}{1}
Divide both sides by d_{j}^{-d}.
E=\frac{A_{j}d_{j}^{d}}{1}
Dividing by d_{j}^{-d} undoes the multiplication by d_{j}^{-d}.
E=A_{j}d_{j}^{d}
Divide A_{j} by d_{j}^{-d}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}