Skip to main content
Solve for q
Tick mark Image
Solve for A_S
Tick mark Image

Similar Problems from Web Search

Share

A_{S}=\frac{q}{2}-\frac{2\gamma -3\times 3\sqrt{2}}{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
A_{S}=\frac{q}{2}-\frac{2\gamma -9\sqrt{2}}{2}
Multiply -3 and 3 to get -9.
A_{S}=\frac{q-\left(2\gamma -9\sqrt{2}\right)}{2}
Since \frac{q}{2} and \frac{2\gamma -9\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
A_{S}=\frac{q-2\gamma +9\sqrt{2}}{2}
Do the multiplications in q-\left(2\gamma -9\sqrt{2}\right).
A_{S}=\frac{1}{2}q-\gamma +\frac{9}{2}\sqrt{2}
Divide each term of q-2\gamma +9\sqrt{2} by 2 to get \frac{1}{2}q-\gamma +\frac{9}{2}\sqrt{2}.
\frac{1}{2}q-\gamma +\frac{9}{2}\sqrt{2}=A_{S}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}q+\frac{9}{2}\sqrt{2}=A_{S}+\gamma
Add \gamma to both sides.
\frac{1}{2}q=A_{S}+\gamma -\frac{9}{2}\sqrt{2}
Subtract \frac{9}{2}\sqrt{2} from both sides.
\frac{1}{2}q=A_{S}+\gamma -\frac{9\sqrt{2}}{2}
The equation is in standard form.
\frac{\frac{1}{2}q}{\frac{1}{2}}=\frac{A_{S}+\gamma -\frac{9\sqrt{2}}{2}}{\frac{1}{2}}
Multiply both sides by 2.
q=\frac{A_{S}+\gamma -\frac{9\sqrt{2}}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
q=2A_{S}+2\gamma -9\sqrt{2}
Divide A_{S}+\gamma -\frac{9\sqrt{2}}{2} by \frac{1}{2} by multiplying A_{S}+\gamma -\frac{9\sqrt{2}}{2} by the reciprocal of \frac{1}{2}.