Solve for q
q=2A_{S}+2\gamma -9\sqrt{2}
Solve for A_S
A_{S}=\frac{q-2\gamma +9\sqrt{2}}{2}
Share
Copied to clipboard
A_{S}=\frac{q}{2}-\frac{2\gamma -3\times 3\sqrt{2}}{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
A_{S}=\frac{q}{2}-\frac{2\gamma -9\sqrt{2}}{2}
Multiply -3 and 3 to get -9.
A_{S}=\frac{q-\left(2\gamma -9\sqrt{2}\right)}{2}
Since \frac{q}{2} and \frac{2\gamma -9\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
A_{S}=\frac{q-2\gamma +9\sqrt{2}}{2}
Do the multiplications in q-\left(2\gamma -9\sqrt{2}\right).
A_{S}=\frac{1}{2}q-\gamma +\frac{9}{2}\sqrt{2}
Divide each term of q-2\gamma +9\sqrt{2} by 2 to get \frac{1}{2}q-\gamma +\frac{9}{2}\sqrt{2}.
\frac{1}{2}q-\gamma +\frac{9}{2}\sqrt{2}=A_{S}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}q+\frac{9}{2}\sqrt{2}=A_{S}+\gamma
Add \gamma to both sides.
\frac{1}{2}q=A_{S}+\gamma -\frac{9}{2}\sqrt{2}
Subtract \frac{9}{2}\sqrt{2} from both sides.
\frac{1}{2}q=A_{S}+\gamma -\frac{9\sqrt{2}}{2}
The equation is in standard form.
\frac{\frac{1}{2}q}{\frac{1}{2}}=\frac{A_{S}+\gamma -\frac{9\sqrt{2}}{2}}{\frac{1}{2}}
Multiply both sides by 2.
q=\frac{A_{S}+\gamma -\frac{9\sqrt{2}}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
q=2A_{S}+2\gamma -9\sqrt{2}
Divide A_{S}+\gamma -\frac{9\sqrt{2}}{2} by \frac{1}{2} by multiplying A_{S}+\gamma -\frac{9\sqrt{2}}{2} by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}