Solve for A_3
A_{3}=\frac{32\sqrt{5}}{5}-\frac{224}{45}\approx 9.333057278
Assign A_3
A_{3}≔\frac{32\sqrt{5}}{5}-\frac{224}{45}
Share
Copied to clipboard
A_{3}=\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times 2^{5}-\frac{10}{9}\times 2^{3}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
A_{3}=\frac{\sqrt{5}}{5}\times 2^{5}-\frac{10}{9}\times 2^{3}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
The square of \sqrt{5} is 5.
A_{3}=\frac{\sqrt{5}}{5}\times 32-\frac{10}{9}\times 2^{3}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Calculate 2 to the power of 5 and get 32.
A_{3}=\frac{\sqrt{5}\times 32}{5}-\frac{10}{9}\times 2^{3}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Express \frac{\sqrt{5}}{5}\times 32 as a single fraction.
A_{3}=\frac{\sqrt{5}\times 32}{5}-\frac{10}{9}\times 8+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Calculate 2 to the power of 3 and get 8.
A_{3}=\frac{\sqrt{5}\times 32}{5}-\frac{10\times 8}{9}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Express \frac{10}{9}\times 8 as a single fraction.
A_{3}=\frac{\sqrt{5}\times 32}{5}-\frac{80}{9}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Multiply 10 and 8 to get 80.
A_{3}=\frac{9\sqrt{5}\times 32}{45}-\frac{80\times 5}{45}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 9 is 45. Multiply \frac{\sqrt{5}\times 32}{5} times \frac{9}{9}. Multiply \frac{80}{9} times \frac{5}{5}.
A_{3}=\frac{9\sqrt{5}\times 32-80\times 5}{45}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Since \frac{9\sqrt{5}\times 32}{45} and \frac{80\times 5}{45} have the same denominator, subtract them by subtracting their numerators.
A_{3}=\frac{288\sqrt{5}-400}{45}+3\times 2-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Do the multiplications in 9\sqrt{5}\times 32-80\times 5.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(\frac{1}{5}\times 1-\frac{10}{9}\times 1+3\right)
Multiply 3 and 2 to get 6.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(\frac{1}{5}-\frac{10}{9}\times 1+3\right)
Multiply \frac{1}{5} and 1 to get \frac{1}{5}.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(\frac{1}{5}-\frac{10}{9}+3\right)
Multiply \frac{10}{9} and 1 to get \frac{10}{9}.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(\frac{9}{45}-\frac{50}{45}+3\right)
Least common multiple of 5 and 9 is 45. Convert \frac{1}{5} and \frac{10}{9} to fractions with denominator 45.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(\frac{9-50}{45}+3\right)
Since \frac{9}{45} and \frac{50}{45} have the same denominator, subtract them by subtracting their numerators.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(-\frac{41}{45}+3\right)
Subtract 50 from 9 to get -41.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\left(-\frac{41}{45}+\frac{135}{45}\right)
Convert 3 to fraction \frac{135}{45}.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\frac{-41+135}{45}
Since -\frac{41}{45} and \frac{135}{45} have the same denominator, add them by adding their numerators.
A_{3}=\frac{288\sqrt{5}-400}{45}+6-\frac{94}{45}
Add -41 and 135 to get 94.
A_{3}=\frac{288\sqrt{5}-400}{45}+\frac{270}{45}-\frac{94}{45}
Convert 6 to fraction \frac{270}{45}.
A_{3}=\frac{288\sqrt{5}-400}{45}+\frac{270-94}{45}
Since \frac{270}{45} and \frac{94}{45} have the same denominator, subtract them by subtracting their numerators.
A_{3}=\frac{288\sqrt{5}-400}{45}+\frac{176}{45}
Subtract 94 from 270 to get 176.
A_{3}=\frac{288\sqrt{5}-400+176}{45}
Since \frac{288\sqrt{5}-400}{45} and \frac{176}{45} have the same denominator, add them by adding their numerators.
A_{3}=\frac{288\sqrt{5}-224}{45}
Do the calculations in 288\sqrt{5}-400+176.
A_{3}=\frac{32}{5}\sqrt{5}-\frac{224}{45}
Divide each term of 288\sqrt{5}-224 by 45 to get \frac{32}{5}\sqrt{5}-\frac{224}{45}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}