Solve for A_2
A_{2} = \frac{91}{45} = 2\frac{1}{45} \approx 2.022222222
Assign A_2
A_{2}≔\frac{91}{45}
Share
Copied to clipboard
A_{2}=\frac{2}{15}-\frac{10}{9}+3
Multiply 2 and \frac{1}{15} to get \frac{2}{15}.
A_{2}=\frac{6}{45}-\frac{50}{45}+3
Least common multiple of 15 and 9 is 45. Convert \frac{2}{15} and \frac{10}{9} to fractions with denominator 45.
A_{2}=\frac{6-50}{45}+3
Since \frac{6}{45} and \frac{50}{45} have the same denominator, subtract them by subtracting their numerators.
A_{2}=-\frac{44}{45}+3
Subtract 50 from 6 to get -44.
A_{2}=-\frac{44}{45}+\frac{135}{45}
Convert 3 to fraction \frac{135}{45}.
A_{2}=\frac{-44+135}{45}
Since -\frac{44}{45} and \frac{135}{45} have the same denominator, add them by adding their numerators.
A_{2}=\frac{91}{45}
Add -44 and 135 to get 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}