Solve for A_2
A_{2}=167.4790625
Assign A_2
A_{2}≔167.4790625
Share
Copied to clipboard
A_{2}=\frac{5825}{16000}\times 121+\frac{42.75}{100}+123
Expand \frac{58.25}{160} by multiplying both numerator and the denominator by 100.
A_{2}=\frac{233}{640}\times 121+\frac{42.75}{100}+123
Reduce the fraction \frac{5825}{16000} to lowest terms by extracting and canceling out 25.
A_{2}=\frac{233\times 121}{640}+\frac{42.75}{100}+123
Express \frac{233}{640}\times 121 as a single fraction.
A_{2}=\frac{28193}{640}+\frac{42.75}{100}+123
Multiply 233 and 121 to get 28193.
A_{2}=\frac{28193}{640}+\frac{4275}{10000}+123
Expand \frac{42.75}{100} by multiplying both numerator and the denominator by 100.
A_{2}=\frac{28193}{640}+\frac{171}{400}+123
Reduce the fraction \frac{4275}{10000} to lowest terms by extracting and canceling out 25.
A_{2}=\frac{140965}{3200}+\frac{1368}{3200}+123
Least common multiple of 640 and 400 is 3200. Convert \frac{28193}{640} and \frac{171}{400} to fractions with denominator 3200.
A_{2}=\frac{140965+1368}{3200}+123
Since \frac{140965}{3200} and \frac{1368}{3200} have the same denominator, add them by adding their numerators.
A_{2}=\frac{142333}{3200}+123
Add 140965 and 1368 to get 142333.
A_{2}=\frac{142333}{3200}+\frac{393600}{3200}
Convert 123 to fraction \frac{393600}{3200}.
A_{2}=\frac{142333+393600}{3200}
Since \frac{142333}{3200} and \frac{393600}{3200} have the same denominator, add them by adding their numerators.
A_{2}=\frac{535933}{3200}
Add 142333 and 393600 to get 535933.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}