Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{1000\left(R+48\right)}{1439T}\text{, }&T\neq 0\\A\in \mathrm{C}\text{, }&R=-48\text{ and }T=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{1000\left(R+48\right)}{1439T}\text{, }&T\neq 0\\A\in \mathrm{R}\text{, }&R=-48\text{ and }T=0\end{matrix}\right.
Solve for R
R=\frac{1439AT}{1000}-48
Share
Copied to clipboard
AT=\frac{48}{1.439}+\frac{R}{1.439}
Divide each term of 48+R by 1.439 to get \frac{48}{1.439}+\frac{R}{1.439}.
AT=\frac{48000}{1439}+\frac{R}{1.439}
Expand \frac{48}{1.439} by multiplying both numerator and the denominator by 1000.
TA=\frac{1000R+48000}{1439}
The equation is in standard form.
\frac{TA}{T}=\frac{1000R+48000}{1439T}
Divide both sides by T.
A=\frac{1000R+48000}{1439T}
Dividing by T undoes the multiplication by T.
A=\frac{1000\left(R+48\right)}{1439T}
Divide \frac{48000+1000R}{1439} by T.
AT=\frac{48}{1.439}+\frac{R}{1.439}
Divide each term of 48+R by 1.439 to get \frac{48}{1.439}+\frac{R}{1.439}.
AT=\frac{48000}{1439}+\frac{R}{1.439}
Expand \frac{48}{1.439} by multiplying both numerator and the denominator by 1000.
TA=\frac{1000R+48000}{1439}
The equation is in standard form.
\frac{TA}{T}=\frac{1000R+48000}{1439T}
Divide both sides by T.
A=\frac{1000R+48000}{1439T}
Dividing by T undoes the multiplication by T.
A=\frac{1000\left(R+48\right)}{1439T}
Divide \frac{48000+1000R}{1439} by T.
AT=\frac{48}{1.439}+\frac{R}{1.439}
Divide each term of 48+R by 1.439 to get \frac{48}{1.439}+\frac{R}{1.439}.
AT=\frac{48000}{1439}+\frac{R}{1.439}
Expand \frac{48}{1.439} by multiplying both numerator and the denominator by 1000.
\frac{48000}{1439}+\frac{R}{1.439}=AT
Swap sides so that all variable terms are on the left hand side.
\frac{R}{1.439}=AT-\frac{48000}{1439}
Subtract \frac{48000}{1439} from both sides.
\frac{1000}{1439}R=AT-\frac{48000}{1439}
The equation is in standard form.
\frac{\frac{1000}{1439}R}{\frac{1000}{1439}}=\frac{AT-\frac{48000}{1439}}{\frac{1000}{1439}}
Divide both sides of the equation by \frac{1000}{1439}, which is the same as multiplying both sides by the reciprocal of the fraction.
R=\frac{AT-\frac{48000}{1439}}{\frac{1000}{1439}}
Dividing by \frac{1000}{1439} undoes the multiplication by \frac{1000}{1439}.
R=\frac{1439AT}{1000}-48
Divide AT-\frac{48000}{1439} by \frac{1000}{1439} by multiplying AT-\frac{48000}{1439} by the reciprocal of \frac{1000}{1439}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}