Solve for A
A=\frac{9}{7D}
D\neq 0\text{ and }I\neq 0
Solve for D
D=\frac{9}{7A}
A\neq 0\text{ and }I\neq 0
Share
Copied to clipboard
AID=I\times \frac{4}{\frac{28}{9}}
Multiply both sides of the equation by I.
AID=I\times 4\times \frac{9}{28}
Divide 4 by \frac{28}{9} by multiplying 4 by the reciprocal of \frac{28}{9}.
AID=I\times \frac{9}{7}
Multiply 4 and \frac{9}{28} to get \frac{9}{7}.
DIA=\frac{9I}{7}
The equation is in standard form.
\frac{DIA}{DI}=\frac{9I}{7DI}
Divide both sides by ID.
A=\frac{9I}{7DI}
Dividing by ID undoes the multiplication by ID.
A=\frac{9}{7D}
Divide \frac{9I}{7} by ID.
AID=I\times \frac{4}{\frac{28}{9}}
Multiply both sides of the equation by I.
AID=I\times 4\times \frac{9}{28}
Divide 4 by \frac{28}{9} by multiplying 4 by the reciprocal of \frac{28}{9}.
AID=I\times \frac{9}{7}
Multiply 4 and \frac{9}{28} to get \frac{9}{7}.
AID=\frac{9I}{7}
The equation is in standard form.
\frac{AID}{AI}=\frac{9I}{7AI}
Divide both sides by AI.
D=\frac{9I}{7AI}
Dividing by AI undoes the multiplication by AI.
D=\frac{9}{7A}
Divide \frac{9I}{7} by AI.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}