Solve for A
A=\frac{3\sqrt{2}}{C}
C\neq 0
Solve for C
C=\frac{3\sqrt{2}}{A}
A\neq 0
Share
Copied to clipboard
AC=\sqrt{6-4+\left(-3-1\right)^{2}}
Calculate -2 to the power of 2 and get 4.
AC=\sqrt{2+\left(-3-1\right)^{2}}
Subtract 4 from 6 to get 2.
AC=\sqrt{2+\left(-4\right)^{2}}
Subtract 1 from -3 to get -4.
AC=\sqrt{2+16}
Calculate -4 to the power of 2 and get 16.
AC=\sqrt{18}
Add 2 and 16 to get 18.
AC=3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
CA=3\sqrt{2}
The equation is in standard form.
\frac{CA}{C}=\frac{3\sqrt{2}}{C}
Divide both sides by C.
A=\frac{3\sqrt{2}}{C}
Dividing by C undoes the multiplication by C.
AC=\sqrt{6-4+\left(-3-1\right)^{2}}
Calculate -2 to the power of 2 and get 4.
AC=\sqrt{2+\left(-3-1\right)^{2}}
Subtract 4 from 6 to get 2.
AC=\sqrt{2+\left(-4\right)^{2}}
Subtract 1 from -3 to get -4.
AC=\sqrt{2+16}
Calculate -4 to the power of 2 and get 16.
AC=\sqrt{18}
Add 2 and 16 to get 18.
AC=3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{AC}{A}=\frac{3\sqrt{2}}{A}
Divide both sides by A.
C=\frac{3\sqrt{2}}{A}
Dividing by A undoes the multiplication by A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}