Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{c}{B}\text{, }&B\neq 0\\A\in \mathrm{C}\text{, }&c=0\text{ and }B=0\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=\frac{c}{A}\text{, }&A\neq 0\\B\in \mathrm{C}\text{, }&c=0\text{ and }A=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{c}{B}\text{, }&B\neq 0\\A\in \mathrm{R}\text{, }&c=0\text{ and }B=0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\frac{c}{A}\text{, }&A\neq 0\\B\in \mathrm{R}\text{, }&c=0\text{ and }A=0\end{matrix}\right.
Share
Copied to clipboard
BA=c
The equation is in standard form.
\frac{BA}{B}=\frac{c}{B}
Divide both sides by B.
A=\frac{c}{B}
Dividing by B undoes the multiplication by B.
AB=c
The equation is in standard form.
\frac{AB}{A}=\frac{c}{A}
Divide both sides by A.
B=\frac{c}{A}
Dividing by A undoes the multiplication by A.
BA=c
The equation is in standard form.
\frac{BA}{B}=\frac{c}{B}
Divide both sides by B.
A=\frac{c}{B}
Dividing by B undoes the multiplication by B.
AB=c
The equation is in standard form.
\frac{AB}{A}=\frac{c}{A}
Divide both sides by A.
B=\frac{c}{A}
Dividing by A undoes the multiplication by A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}