Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{CD}{B\left(1-CD\right)}\text{, }&\left(D=0\text{ or }C\neq \frac{1}{D}\right)\text{ and }B\neq 0\\A\in \mathrm{C}\text{, }&B=0\text{ and }\left(C=0\text{ or }D=0\right)\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{CD}{A\left(1-CD\right)}\text{, }&\left(D=0\text{ or }C\neq \frac{1}{D}\right)\text{ and }A\neq 0\\B\in \mathrm{C}\text{, }&A=0\text{ and }\left(C=0\text{ or }D=0\right)\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=-\frac{CD}{B\left(1-CD\right)}\text{, }&\left(D=0\text{ or }C\neq \frac{1}{D}\right)\text{ and }B\neq 0\\A\in \mathrm{R}\text{, }&B=0\text{ and }\left(C=0\text{ or }D=0\right)\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{CD}{A\left(1-CD\right)}\text{, }&\left(D=0\text{ or }C\neq \frac{1}{D}\right)\text{ and }A\neq 0\\B\in \mathrm{R}\text{, }&A=0\text{ and }\left(C=0\text{ or }D=0\right)\end{matrix}\right.
Share
Copied to clipboard
AB+CD-ADBC=0
Subtract ADBC from both sides.
AB-ADBC=-CD
Subtract CD from both sides. Anything subtracted from zero gives its negation.
\left(B-DBC\right)A=-CD
Combine all terms containing A.
\left(B-BCD\right)A=-CD
The equation is in standard form.
\frac{\left(B-BCD\right)A}{B-BCD}=-\frac{CD}{B-BCD}
Divide both sides by -BCD+B.
A=-\frac{CD}{B-BCD}
Dividing by -BCD+B undoes the multiplication by -BCD+B.
A=-\frac{CD}{B\left(1-CD\right)}
Divide -CD by -BCD+B.
AB+CD-ADBC=0
Subtract ADBC from both sides.
AB-ADBC=-CD
Subtract CD from both sides. Anything subtracted from zero gives its negation.
\left(A-ADC\right)B=-CD
Combine all terms containing B.
\left(A-ACD\right)B=-CD
The equation is in standard form.
\frac{\left(A-ACD\right)B}{A-ACD}=-\frac{CD}{A-ACD}
Divide both sides by A-ADC.
B=-\frac{CD}{A-ACD}
Dividing by A-ADC undoes the multiplication by A-ADC.
B=-\frac{CD}{A\left(1-CD\right)}
Divide -CD by A-ADC.
AB+CD-ADBC=0
Subtract ADBC from both sides.
AB-ADBC=-CD
Subtract CD from both sides. Anything subtracted from zero gives its negation.
\left(B-DBC\right)A=-CD
Combine all terms containing A.
\left(B-BCD\right)A=-CD
The equation is in standard form.
\frac{\left(B-BCD\right)A}{B-BCD}=-\frac{CD}{B-BCD}
Divide both sides by -BCD+B.
A=-\frac{CD}{B-BCD}
Dividing by -BCD+B undoes the multiplication by -BCD+B.
A=-\frac{CD}{B\left(1-CD\right)}
Divide -CD by -BCD+B.
AB+CD-ADBC=0
Subtract ADBC from both sides.
AB-ADBC=-CD
Subtract CD from both sides. Anything subtracted from zero gives its negation.
\left(A-ADC\right)B=-CD
Combine all terms containing B.
\left(A-ACD\right)B=-CD
The equation is in standard form.
\frac{\left(A-ACD\right)B}{A-ACD}=-\frac{CD}{A-ACD}
Divide both sides by A-ADC.
B=-\frac{CD}{A-ACD}
Dividing by A-ADC undoes the multiplication by A-ADC.
B=-\frac{CD}{A\left(1-CD\right)}
Divide -CD by A-ADC.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}