Skip to main content
Solve for A (complex solution)
Tick mark Image
Solve for B (complex solution)
Tick mark Image
Solve for A
Tick mark Image
Solve for B
Tick mark Image
Graph

Similar Problems from Web Search

Share

Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
Ax^{2}-Ax+Bx=4x^{2}+8x-Bx^{2}
Subtract Bx^{2} from both sides.
Ax^{2}-Ax=4x^{2}+8x-Bx^{2}-Bx
Subtract Bx from both sides.
Ax^{2}-Ax=-Bx^{2}+4x^{2}-Bx+8x
Reorder the terms.
\left(x^{2}-x\right)A=-Bx^{2}+4x^{2}-Bx+8x
Combine all terms containing A.
\left(x^{2}-x\right)A=8x-Bx+4x^{2}-Bx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)A}{x^{2}-x}=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
A=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
A=\frac{8-B+4x-Bx}{x-1}
Divide x\left(-Bx+4x-B+8\right) by x^{2}-x.
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
-Ax+Bx^{2}+Bx=4x^{2}+8x-Ax^{2}
Subtract Ax^{2} from both sides.
Bx^{2}+Bx=4x^{2}+8x-Ax^{2}+Ax
Add Ax to both sides.
Bx^{2}+Bx=-Ax^{2}+4x^{2}+Ax+8x
Reorder the terms.
\left(x^{2}+x\right)B=-Ax^{2}+4x^{2}+Ax+8x
Combine all terms containing B.
\left(x^{2}+x\right)B=8x+Ax+4x^{2}-Ax^{2}
The equation is in standard form.
\frac{\left(x^{2}+x\right)B}{x^{2}+x}=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Divide both sides by x^{2}+x.
B=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
B=\frac{8+A+4x-Ax}{x+1}
Divide x\left(-Ax+4x+A+8\right) by x^{2}+x.
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
Ax^{2}-Ax+Bx=4x^{2}+8x-Bx^{2}
Subtract Bx^{2} from both sides.
Ax^{2}-Ax=4x^{2}+8x-Bx^{2}-Bx
Subtract Bx from both sides.
Ax^{2}-Ax=-Bx^{2}+4x^{2}-Bx+8x
Reorder the terms.
\left(x^{2}-x\right)A=-Bx^{2}+4x^{2}-Bx+8x
Combine all terms containing A.
\left(x^{2}-x\right)A=8x-Bx+4x^{2}-Bx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)A}{x^{2}-x}=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
A=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
A=\frac{8-B+4x-Bx}{x-1}
Divide x\left(-Bx+4x-B+8\right) by x^{2}-x.
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
-Ax+Bx^{2}+Bx=4x^{2}+8x-Ax^{2}
Subtract Ax^{2} from both sides.
Bx^{2}+Bx=4x^{2}+8x-Ax^{2}+Ax
Add Ax to both sides.
Bx^{2}+Bx=-Ax^{2}+4x^{2}+Ax+8x
Reorder the terms.
\left(x^{2}+x\right)B=-Ax^{2}+4x^{2}+Ax+8x
Combine all terms containing B.
\left(x^{2}+x\right)B=8x+Ax+4x^{2}-Ax^{2}
The equation is in standard form.
\frac{\left(x^{2}+x\right)B}{x^{2}+x}=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Divide both sides by x^{2}+x.
B=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
B=\frac{8+A+4x-Ax}{x+1}
Divide x\left(-Ax+4x+A+8\right) by x^{2}+x.