Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{Bx-4x+B-8}{x-1}\text{, }&x\neq 1\\A\in \mathrm{C}\text{, }&x=0\text{ or }\left(B=6\text{ and }x=1\right)\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{Ax-4x-A-8}{x+1}\text{, }&x\neq -1\\B\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=-1\text{ and }A=-2\right)\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=-\frac{Bx-4x+B-8}{x-1}\text{, }&x\neq 1\\A\in \mathrm{R}\text{, }&x=0\text{ or }\left(B=6\text{ and }x=1\right)\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{Ax-4x-A-8}{x+1}\text{, }&x\neq -1\\B\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=-1\text{ and }A=-2\right)\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
A ( x ^ { 2 } - x ) + B ( x ^ { 2 } + x ) = 4 x ^ { 2 } + 8 x
Share
Copied to clipboard
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
Ax^{2}-Ax+Bx=4x^{2}+8x-Bx^{2}
Subtract Bx^{2} from both sides.
Ax^{2}-Ax=4x^{2}+8x-Bx^{2}-Bx
Subtract Bx from both sides.
Ax^{2}-Ax=-Bx^{2}+4x^{2}-Bx+8x
Reorder the terms.
\left(x^{2}-x\right)A=-Bx^{2}+4x^{2}-Bx+8x
Combine all terms containing A.
\left(x^{2}-x\right)A=8x-Bx+4x^{2}-Bx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)A}{x^{2}-x}=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
A=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
A=\frac{8-B+4x-Bx}{x-1}
Divide x\left(-Bx+4x-B+8\right) by x^{2}-x.
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
-Ax+Bx^{2}+Bx=4x^{2}+8x-Ax^{2}
Subtract Ax^{2} from both sides.
Bx^{2}+Bx=4x^{2}+8x-Ax^{2}+Ax
Add Ax to both sides.
Bx^{2}+Bx=-Ax^{2}+4x^{2}+Ax+8x
Reorder the terms.
\left(x^{2}+x\right)B=-Ax^{2}+4x^{2}+Ax+8x
Combine all terms containing B.
\left(x^{2}+x\right)B=8x+Ax+4x^{2}-Ax^{2}
The equation is in standard form.
\frac{\left(x^{2}+x\right)B}{x^{2}+x}=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Divide both sides by x^{2}+x.
B=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
B=\frac{8+A+4x-Ax}{x+1}
Divide x\left(-Ax+4x+A+8\right) by x^{2}+x.
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
Ax^{2}-Ax+Bx=4x^{2}+8x-Bx^{2}
Subtract Bx^{2} from both sides.
Ax^{2}-Ax=4x^{2}+8x-Bx^{2}-Bx
Subtract Bx from both sides.
Ax^{2}-Ax=-Bx^{2}+4x^{2}-Bx+8x
Reorder the terms.
\left(x^{2}-x\right)A=-Bx^{2}+4x^{2}-Bx+8x
Combine all terms containing A.
\left(x^{2}-x\right)A=8x-Bx+4x^{2}-Bx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)A}{x^{2}-x}=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
A=\frac{x\left(8-B+4x-Bx\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
A=\frac{8-B+4x-Bx}{x-1}
Divide x\left(-Bx+4x-B+8\right) by x^{2}-x.
Ax^{2}-Ax+B\left(x^{2}+x\right)=4x^{2}+8x
Use the distributive property to multiply A by x^{2}-x.
Ax^{2}-Ax+Bx^{2}+Bx=4x^{2}+8x
Use the distributive property to multiply B by x^{2}+x.
-Ax+Bx^{2}+Bx=4x^{2}+8x-Ax^{2}
Subtract Ax^{2} from both sides.
Bx^{2}+Bx=4x^{2}+8x-Ax^{2}+Ax
Add Ax to both sides.
Bx^{2}+Bx=-Ax^{2}+4x^{2}+Ax+8x
Reorder the terms.
\left(x^{2}+x\right)B=-Ax^{2}+4x^{2}+Ax+8x
Combine all terms containing B.
\left(x^{2}+x\right)B=8x+Ax+4x^{2}-Ax^{2}
The equation is in standard form.
\frac{\left(x^{2}+x\right)B}{x^{2}+x}=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Divide both sides by x^{2}+x.
B=\frac{x\left(8+A+4x-Ax\right)}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
B=\frac{8+A+4x-Ax}{x+1}
Divide x\left(-Ax+4x+A+8\right) by x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}